DE LA RECHERCHE À L'INDUSTRIE

Bringing frame fields from research to industrial usage

Franck Ledoux

FRAMES 2019, July, 1-2 2019, Louvain-La-Neuve, Belgium

A quick presentation of my context (<u>http://www-hpc.cea.fr/index-en.htm</u>)

CEA is a French National Laboratory

- Focusing on research and development for energy solutions
- Participation in research and innovation for HPC through the "Simulation Program" supported by its Direction des Applications Militaires(CEA / DAM).
 - With software development including meshing tools
 - For CEA mathematicians and physicists
 - For French organisms we collaborate with

Meshes for numerical simulation

2(+1) main types of simulations

LAGRANGE

- Moving meshes
- Pure material cells and moving vertices
- Cells| = Millions to hundred of millons

EULER

- **Static meshes** with possibly local refinement (AMR)
- Mixed-material cells
 - |Cells| = dozens of millions to billions

ALE

- Adaptive Lagrange Euler
- Moving mesh and mixed-material cells
- But movement is controled by the numerical code

The Sod shock tube problem 1-dimensional Riemann problem, with the following parameters for an ideal gaz

Propagation of a spherical shock wave from a point source energy (sphere center).

Two meshes of the same domain filled of gaz

LAGRANGE STRATEGY

ALE STRATEGY

Goal: achieve inertial confinement fusion (ICF) through indirect drive with ignition of a central hotspot.

Equivalent to the American National Ignition Facility (NIF) at LLNL

The principle is to produce fusion reactions within a Deuterium-Tritium mixture contained in a microcapsule using powerful lasers. You get then a very dense plasma but only for very short periods of time.

Example of Lagrange simulation for LMJ experiences

27

Example of Lagrange simulation for LMJ experiences

t∕¹

Example of Lagrange simulation for LMJ experiences

t∕1

Example of Lagrange simulation for LMJ experiences

Lagrange simulations with large deformations

- Full hexahedral meshes
- Strong size and direction control

What do our users expect?

The mesh is a parameter that physicists want to control

- Depends on the simulation (physics and numerics concerns)
- But some usual expected features of hexahedral meshes
 - 1. Block structure
 - 2. Geometric boundary alignment
 - 3. Low distortion of the cells
 - 4. Element size control

DE LA RECHERCHE À L'INDUSTRIE

What we do for our users?

Software for CAD modeling and block-structured quad/hex meshing

Software for mesh processing

- Parallel mesh data structure
- Parallel meshing
- Quantity projection
- Euler to Lagrange remeshing

DE LA RECHERCHE À L'INDUSTRIE

What we do for our users?

Software for CAD modeling and block-structured quad/hex meshing

Can we bring frame field results from research to our tools?

Magix3D - CEA tool dedicated to hexahedral block meshing

Frame field research at CEA from 2013

On-going works for bringing frame field technology to our users

- 2D cross fields
- 3D frame fields

MAGIX3D

A tool dedicated to

hexahedral block meshing

Magix3D – A tool dedicated to hexahedral block meshing

- Tailored to physicists requirements, who want to control the meshing process
- Simple geometric functionalities and advanced hex meshing capabilities
 - 3 launch modes: station, client-server and batch

Magix3D – A tool dedicated to hexahedral block meshing

2D to 3D capabilities

Magix3D – A tool dedicated to hexahedral block meshing

Non-conforming blocking

Cea

Magix3D – A tool dedicated to hexahedral block meshing

Blocking operations

20

- Single block creation
- Multi-block cutting
- Multi-block splitting via O-grid patterns
- Geometric classification
- Smoothing

A simple CAD model with Magix3D

Model						
Block Structure						
B	29 blocks	59 blocks	62 blocks	92 blocks	132 blocks	174 blocks
Average time	15 mins	25 mins	30 mins	1 hour	1.5 hours	2 hours

Can our meshing research help us?

Nicolas Kowalski's PHD.

Domain partitioning using frame fields: applications to quadrilateral and hexahedral meshing. Defended in 2013. Advisors P. Frey (UPMC) & F. Ledoux (CEA)

Generation of full-quad structured meshes in 2D

- Hexahedral block structure appears
- Only 3 and 5-valence vertices
- Theoretical ground offers guarantees

Nicolas Kowalski's PHD.

Domain partitioning using frame fields: applications to quadrilateral and hexahedral meshing. Defended in 2013. Advisors P. Frey (UPMC) & F. Ledoux (CEA)

It didn't work in 3D

- No guarantee to get a block structure
- Numerically sensitive
- Limited to simple examples

[Huang et al. 11] Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. Boundary aligned smooth 3d cross- frame field. ACM Trans. Graph., 30(6):143, 2011. [Li et al. 12] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. All-hex meshing using singularity-restricted field. ACM Trans. Graph., 31(6):177:1–177:11, 2012. [Kowalski et al. 15] N. Kowalski, F. Ledoux, and P. Frey. Smoothness driven frame field generation for hexahedral meshing. *Computer Aided Design*, 2015.

Try to make it work in 3D, still without any success

3-5 singularity lines

Extruded model along one linear direction

Singularity line in the generated frame field

[Vie16] Ryan Viertel, Matt Staten and Franck Ledoux, Analysis of Non-Meshable Automatically Generated Frame Fields, research note at 25th International Meshing Roundtable, 2016.

Try to make it work in 3D, still without any success

- 3-5 singularity lines
- Ski jump configuration

Try to make it work in 3D, still without any success

- 3-5 singularity lines
- Ski jump configuration

Try to make it work in 3D, still without any success

- 3-5 singularity lines
- Ski jump configuration
- **So we have relaxed to hex-dominant meshing** (but remains to control locality at least)

Took a look at Polycubes

Try to make it work in 3D, still without any success

- 3-5 singularity lines
- Ski jump configuration

- **So we have relaxed to hex-dominant meshing** (but remains to control locality at least)
- Took a look at Polycubes

Try to put 2D results in our meshing software for surface meshing

For unstructured quad(-dominant) meshing via an indirect approach (idem work to do)

A simple CAD model with Magix3D, Polycube and Frame fields

Cea

Frame fields – Focus on failure cases

But what can we bring to the final users RIGHT NOW ?

2D Automatic meshing

- Curved block structure
- Unstructured full-quad with size control and boudary alignment

3D Blocking

- 3D interactive approach Use frame field to define a new tool
- Hex-dominant meshing must be evaluated by users.

AND AFTER

• Polycube and frame fields studies

Towards a robust surface blocking method

Ana-Maria Vintescu's Post-doc

(since January 2019)

Frame fields for 2D block structure

How to trace singularity lines?

- Define 3/5-indexed slots at each singularity point (field singularity and non-convex geometric corners)
- Try and connect all of them

Use the frame field geometry to create lines

Heun's integration

Singularity graph extraction issues

- Strong impact of
 - the mesh resolution
 - Tolerance parameters (sing. ball & connect. distance)
- Streamline tracing error increases near singularities
- Streamlines can spiral infinitely
- Streamline tracing algorithms tend to produce thin blocks

Graph-based tracing

- **Dijkstra** algorithm to compute shortest paths from each slot to the others (boundary edges are possible exit slots)
 - Generate an oriented graph G=(V,E) where
 - V = slots + some boundary points, and
 - E = shortest path from each slot to the others
 - Starting from a triangle slot source
 - Walk along triangle centers (u,v0,v1...) visiting adjacent triangles
 - Distance as the angle difference between the (previous and
 - Get the shortest paths towards the slots of other singularities (or boundary) targets

- Integer Linear Programming for filtering edges of G
- Minimizing the sum of selected edge weights
- 1 edge per slot exactly

- 1 boolean unknown per edge (0-remove, 1-keep)
- Forbid intersection between edges

Graph-based tracing

Short-time future work

- Generation of high-order blocks
- Evaluation of a triangular mesh size adaption process

Benefits

No spiral streamlines

Drawback

Improved accuracy with mesh refinement

Computationally more expensive

Medium-time future work

Try and diminish the computational cost of the methodIntegration to Magix3D for automatic surface blocking

|T| = 102 707

Design of an interactive tool for hexahedral mesh blocking

Simon Calderan's Phd (started in November 2018)

"Dual-based user-guided hexahedral block generation using frame fields", Simon Caldéran (CEA), Franck Ledoux (CEA), Guillaume Hutzler, submitted to IMR 2019.

3D Interactive blocking from frame fields

Input: a valid model and frame field

- No 3-5 singularity line
- No jump
- Refined enough

- Select one point and one direction to build a single surface

Build dual surfaces

Extract primal blocks

- Check the dual structure validity
- If invalid dual structure, goes back to dual sheet creation

'RZ

[1] Z. Zheng and R. Wang and S. Gao and Y. Liao and M. Ding, *Dual Surface Based Approach to Block Decomposition of Solid Models*, Proceedinds of the 26th International Meshing Roundtable, 2018.

[2] K. Takayama , *Dual Sheet Meshing: An Interactive Approach to Robust Hexahedralization*, Computer Graphics Forum, published by the Eurographics Association, DOI= 10.1111/cgf.13617, 2019.

[3] Marco Livesu and all, Loopy Cuts: Surface-Field Aware Block Decomposition for Hex-Meshing, Preprint, March 2019.

Intersected tetrahedra

Successive creations of dual surfaces

Surface-style representation

Dual surface creation

- **Input:** a point (so a tet) and a direction
- Propagation in the *physical* tetrahedral mesh following the frame field along cut edges
- Numerically sensitive \rightarrow needs control filter near singularity lines

Dual surface creation

- **Input:** a point (so a tet) and a direction
- Propagation in the *physical* tetrahedral mesh following the frame field along cut edges
- Numerically sensitive → needs control filter near singularity lines

Topological filter + Geometric filter (90 degrees) Topological filter + Geometric filter (45 degrees)

No filter

dual surfaces

dual surfaces tetrahedra

dual zones

E LA RECHERCHE À L'INDUSTR

Only one or two dual surfaces \rightarrow not a dual hex

dual surfaces

dual surfaces tetrahedra

dual zones

- Only one or two dual surfaces \rightarrow not a dual hex
- A boundary dual zone can not contain a field singularity

dual surfaces

dual surfaces tetrahedra

dual zones

- Only one or two dual surfaces \rightarrow not a dual hex
- A boundary dual zone can not contain a field singularity

- Only one or two dual surfaces \rightarrow not a dual hex
- A boundary dual zone can not contain a field singularity or two geometric corners

- Only one or two dual surfaces \rightarrow not a dual hex
- A boundary dual zone can not contain a field singularity or two geometric corners
- A dual zone can not contain two field singularities

Limitations and future work for interactive 3D blocking

3-5 singularity lines

Interactive line modification but how to modify the frame field then? See « *Symmetric Moving Frames »*, E. Corman, K. Crane, ACM ToG, July 2019 or « *Singularity-constrained octahedral fields for hexahedral meshing »*, H. Liu and all, ACM ToG, 2018.

Model splitting using stable frame fields direction

Ski Jump zone

Pattern insertion via user selection

Conclusion about using frame fields for our tools

Quad blocking

close to get expected robustness

Hexahedral-dominant meshing requirements:

- Constraint some boundaries for assembly models
- Control hexahedra location
- Hexahedral block meshing
 - Remains a lot of work for automation
 - Interactivity will help us but is not the key

Thank you