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SUMMARY

In a recent paper, a new indirect method to generate all-quad meshes has been developed. It takes advantage
of a well-known algorithm of the graph theory, namely the Blossom algorithm, which computes in polyno-
mial time the minimum cost perfect matching in a graph. In this paper, we describe a method that allows to
build triangular meshes that are better suited for recombination into quadrangles. This is performed by using
the infinity norm to compute distances in the meshing process. The alignment of the elements in the frontal
Delaunay procedure is controlled by a cross field defined on the domain. Meshes constructed this way have
their points aligned with the cross-field directions, and their triangles are almost right everywhere. Then,
recombination with the Blossom-based approach yields quadrilateral meshes of excellent quality. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There exist so far essentially two approaches to generate automatically quadrilateral meshes. With
direct methods, quadrilaterals are constructed at once, using either advancing front techniques [1]
or regular grid-based methods (quadtrees) [2]. Indirect methods, on the other hand, rely on an initial
triangular mesh and apply merging techniques to recombine the triangles of the initial mesh into
quadrangles [3, 4]. Other more sophisticated indirect methods use a mix of advancing front and
recombination [5].

Indirect methods have the advantage to rely on triangle meshing algorithms that are relatively
simple to implement and that have some mathematical properties that allow to build fast and robust
surface meshers. In a recent paper [6], we have shown that it is always possible to build a mesh
made of quadrilaterals only starting from any triangular mesh that contains an even number of
triangles. The Blossom-quad algorithm described in [6] allows to recombine optimally any trian-
gular mesh in a very efficient manner. Yet, triangular meshers aim at producing triangles that are
close to equilateral, and a set of equilateral triangles is not the optimal starting point of a indirect
quadrilateralization algorithm.

In order to illustrate that problem, Figure 1(a) shows a uniform triangular mesh in R2 with equi-
lateral elements; all elements and all edges are of size a. This mesh can be deemed perfect in the
sense that optimality criteria, both in size and shape, are fulfilled. In this case, the Voronoi cell
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(a) (b)

Figure 1. Voronoi cells of one vertex that belongs to mesh either of equilateral triangles (a) or of right
triangles (b).

of each vertex x is a hexagon of area a2
p
3=2, and the number of points per unit of surface is

2=.a2
p
3/. Comparing with a uniform mesh made of right triangles of size a (Figure 1(b)), one sees

that the Voronoi cells are now squares of area a2. Filling R2 with equilateral triangles requires thus
2=
p
3 times more vertices (i.e., about 15% more) than filling the same space with right triangles.

So, although quad meshes can be obtained by recombination of any triangular meshes, conventional
triangular meshes are not the most appropriate starting point because they are essentially made of
(nearly) equilateral triangles and contain therefore about 15% too many vertices.

This paper can be considered as the sequel of the Blossom-quad paper [6]. Its purpose is
to introduce a method to generate triangular meshes suited for recombination into well-behaved
quad meshes.

The mesh in Figure 1(b) contains edges of different sizes. For example, ky�y2k2 D a
p
2, whereas

ky � y1k2 D a. This mesh contains long edges at 45ı and short edges aligned with the axis. This
explains why mesh (b) contains less points than mesh (a). Yet, long edges will be eliminated by the
recombination procedure, and the final mesh will be made of quadrilaterals with all edges of size a.

In devising a procedure to generate triangular meshes well suited for recombination into quadran-
gles, one should recognize that the optimal size of an edge to be inserted at a point by the Delaunay
algorithm depends on its orientation. A first possibility would be to encapsulate this directional
information into some kind of anisotropic L2 metric. This is, however, not possible as such a metric
M would have to ensure that (Figure 1(b))

.y1� y2/TM.y1� y2/D .y3� y2/TM.y3� y2/D .y3� y4/TM.y3� y4/D .y� y2/TM.y� y2/,

which is clearly impossible. This suffices to conclude that standard metric-based triangulator is
unable to produce meshes made exclusively of right triangles.

The approach proposed in this paper is based on the following observation. If distances between
points are measured in the L1 norm, the triangular elements of Figure 1(a) are no longer equilat-
eral : kx�x2k1 D a and kx�x1k1 D a

p
3=2. On the other hand, the elements of Figure 1(b), which

are right triangles in the L2 norm, are equilateral in the L1 norm : ky� y1k1 D ky� y2k1 D a.
On this basis, a frontal Delaunay algorithm can be adapted to work on the L1 norm so as to pro-

duce triangular meshes with the right number of nodes and triangles suitably shaped for producing
high-quality quadrilaterals after recombination.

In their paper [7], Tchon and Camarero have already proposed a method for generating quad-
dominant meshes on the basis of the use of the L1 norm. In their approach, they start from a
standard triangular mesh and apply vertex relocation that aim at aligns vertices on prescribed direc-
tions. A very similar approach has been theorized and extended in 3D by Lévy in its Lp centroidal
Voronoi tessellation (LPCVT) paper [8]. There are two advantages with our new approach:

1. Because they rely on the minimization of complex and stiff functionals, both smoothing
approaches of Tchon and Lévy are not CPU efficient (101 s for generating 972 quads [7] and
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Figure 2. Surface mesh issued from an octree method.

322 s for generating a surface mesh of about 1000 elements). Here, our approach allows to
generate quads at the speed of triangle mesh generation, that is, tens of thousands of elements
a minute.

2. Both approaches of Tchon and Lévy rely on existing triangulation that contain too much
vertices. In [8], authors propose to remove vertices in the smoothing process in order to address
that issue. In our new approach, we obtain directly the right number of points.

The paper is divided into two parts.
First, a new method to build the so-called cross fields [8] is presented. The cross fields repre-

sent at each point of the domain the preferred orientations of the quadrilateral mesh. In the finite
element community, it is usually appreciated that quadrilateral elements have orientations parallel
to the domain boundaries. With quadtree-based quadrilateral meshing techniques, for example, the
mesh orientation is determined by the orientation of the initial quadrant of the quadtree. This leads
to misoriented elements near the boundaries, which are rotated by about 45ı with respect to the
general quadtree orientation (Figure 2). In the proposed approach, the mesh orientation will not be
determined by means of a user-defined local reference frame or by advancing fronts in the mesh
but by a cross field computed beforehand on a background mesh. The cross field is set parallel to
the edges and boundaries of the domain, and propagated smoothly across the bulk of the domain by
means of a Laplace harmonic map.

In the second part, the mesh generation procedure is described in detail. A new frontal Delaunay
approach inspired by Rebay [9] is proposed for determining the successive position of new points.
Frontal meshers usually insert a point in the mesh so as to form an equilateral triangle (in L2 norm).
Here, we also aim at generating an equilateral triangle, yet in the sense of the localL1 norm aligned
with the cross field. Meshes constructed this way have their points aligned with the cross-field direc-
tion, and their triangles are almost right everywhere. Then, recombination with our Blossom-quad
approach [6] yields quadrilateral meshes of excellent quality.

2. SURFACES

Only surface meshing is considered in this paper. The parametrization of a surface S is a map

uD ¹u, vº 2 S 0 �R2 7! x.u/D ¹x,y, ´º 2 S �R3. (1)

The metric tensor

M D

"
@x
@u
� @x
@u

@x
@u
� @x
@v

@x
@v
� @x
@u

@x
@v
� @x
@v

#
(2)

allows to measure angles and distances in the parametric plane ¹u, vº.
A mapping x.u/ is said to be conformal if the eigenvalues of M are identical. Conformal

mappings preserve angles, and hence the information carried by the cross field. Moreover, it is
possible to obtain a uniform isotropic surface mesh on the surface S by constructing a non-uniform
isotropic mesh in the parameter plane. If ı.x/ is the prescribed mesh size field on S , the size field in
the parametric plane is simply ı0.u/D ı.x.u//j detM j1=4.
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(a) (b)

(c) (d)

Figure 3. Conformal reparametrization of a car hood. (a) The CAD decomposition of the hood into 18
Bézier surfaces. (b) The initial conforming mesh. (c) The result of the conformal reparametrization, that is,

isolines of u and v on the whole hood. (d) The projection of the initial mesh on the parameter plane u.

Surfaces considered in this paper are assumed to have a conformal parametrization. This might
be seen as a severe limitation, for many standard parametrizations are not conformal (e.g., spherical
coordinates or transfinite maps). The issue of non-conformal maps will, however, be dealt with
in a forthcoming paper where anisotropic quad meshing will be addressed. Moreover, in case
of a non-conformal surface parametrization, it is always possible to build a conformal one using
reparametrization techniques [10–13].

As an example, let us consider the example of the car hood depicted in Figure 3. The CAD is
made of 18 Bézier surfaces. A first surface triangulation that is consistent with the CAD descrip-
tion, that is, elements cover the surface patches exactly, is generated. This first triangulation is then
used to build a conformal parametrization of the whole hood. For that, a PDE is solved on the initial
triangulation to compute the parameter u of every vertex of the initial triangulation.

3. CROSS FIELDS

The cross fields represent at each point of the domain the preferred orientations of the quadrilateral
mesh. In two dimensions, a sufficient information for defining a cross field is the angle �.u/ that
defines the orientation of a local frame at each point u in the parameter plane. The edges of the
quadrilaterals generated around u should then be aligned with the cross field. Figure 4 shows an
annular domain, the cross field, and the resulting quad mesh. The computer graphics community
has already been confronted with the issue of computing ‘cross fields’ in the context of (global)
surface parametrization [10, 14]. Cross fields can be based on principal directions of curvature of
the surface [8].
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Figure 4. Mesh of annular domain and a zoomed-in image on the cross field.

Here, we consider an ad hoc approach on the basis of the following criteria:

� The cross field should be computed automatically.
� Mesh directions should be parallel to the boundaries of the domain at the vicinity of those

boundaries.
� The cross field should be smooth.

In order to fulfill those constraints, we have chosen to compute � using a boundary value problem.
The value of � is fixed at the boundary of the domain and is propagated inside the domain by using
an elliptic PDE. The value of � at the boundary is chosen in such a way that the local axis at the
boundary is aligned with the geometry of the boundary.

With the angular orientation of a cross being defined up to the multiples of  =2, it cannot be
represented univocally by the orientation of one branch of the cross. The complex valued function

˛.u/D a.u/C ib.u/D e4i�.u/

however offers a univocal representation, as it takes one same value for the directions of the four
branches of a local cross.

A first triangular mesh T0 is generated using any available algorithm. If a parametrization of the
surface needs to be computed, then we use the same mesh as the one that has been used for comput-
ing the parametrization. Two Laplace equations with Dirichlet boundary conditions are then solved
for each surface of the mesh in order to compute the real part a.u/D cos 4� and the imaginary part
b.u/D sin 4� of ˛:

r2aD 0, r2b D 0 on S 0,
aD Na.u/, b D Nb.u/ on @S 0.

(3)

Then, we have to supply the boundary conditions Na.u/ and Nb.u/, ensuring that � is aligned
with @S 0. Consider Figure 5. At each point u0 of the surface S 0, Dirichlet boundary conditions are
associated to the local normal n of the surface. At point u0, we choose NaD cos 4� and Nb D sin 4� .

After solving, the cross field is represented by

�.u/D
1

4
a tan 2.b.u/, a.u//.

As an example, Figure 6 shows the cross field for a surface with many circular holes.

4. TRIANGULATION IN THE L1 NORM

In this section, usual geometrical notions defined in the L2 norm are extended in the L1 norm.
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Figure 5. Boundary conditions for the computation of cross fields.

Figure 6. Computation of the cross field for one surface with many holes. Top left figure shows the a.u/
field. Bottom right figure shows the cross field. The two other figures show the meshes resulting from the

new algorithm.

4.1. Distances and norms

In the R2 plane, the distance between two points x1.x1,y1/ and x2.x2,y2/ is usually based on the
Euclidean norm (L2 norm). Other distances can be defined, however, on the basis of other norms:

� The L1-norm distance kx2 � x1k1 D jx2 � x1j C jy2 � y1j.
� The L2-norm distance kx2 � x1k2 D .jx2 � x1j2C jy2 � y1j2/1=2.
� The Lp-norm distance kx2 � x1kp D .jx2 � x1jp C jy2 � y1jp/

1=p .
� The L1-norm distance kx2 � x1k1 D limp!1kx2 � x1kp Dmax.jx2 � x1j, jy2 � y1j/.

Figure 7 shows unit circles in different norms. One important thing to remark is that only the
L2 norm is rotation invariant. All the other norms, including the L1 norm, depend on the local
orientation of the coordinate axes.

In order to simplify the notations, in what follows, we consider that .x,y/ are local coordinates
aligned with the cross field .xcross,ycross/ (see, for example, the cross field in Figure 4).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 94:494–512
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Figure 7. Illustration of the unit circle in different norms kxkp .

Figure 8. Bisector of two points x1 D .�xp ,�yp/ and x2 D .xp ,yp/ using the L1 norm.

4.2. Bisectors in the L1 norm

The perpendicular bisector, or bisector of the segment delimited by the points x1 D .�xp ,�yp/
and x2 D .xp ,yp/, is by definition the set of points x D .x,y/ equidistant to x1 and x2. It is the
union of the intersections of circles centered at x1 and x2 and having the same radius. In the L2

norm, those intersections are each time two points, and their union forms a straight line. In the L1

norm, the L1-circles have the geometric appearance of squares, and their intersections 2 by 2 are
either two points or a segment. The bisector is then a broken line in general, but it can also form a
diabolo-shaped region whenever the points are aligned with an axis (x1 D x2 or y1 D y2) (Figure 9).

This is shown on an example in Figure 8. It is assumed, without loss of generality, that xp > yp .
The bisector of the segment in the L1 norm is the set

¹xD .x,y/, max.jx � xpj, jy � ypj/Dmax.jxC xpj, jy C ypj/º.

The vertical segment Figure 8 through the origin .0, 0/ is the intersection of the L1-circles of
L1-radius xp centered at x1 and x2. It thus belongs to the bisector. Increasing now the radius pro-
gressively, the intersection of the two L1-circles is a pair of points forming two half lines oriented
at 3 =4 and starting at .0, xp � yp/ and .0,�xp C yp/, respectively. The distance in the L1 norm
between a point x D .x,y/ of the bisector and x1 and x2 is xp � x or yp � y. There exists an
ambiguity when yp D 0. In this case, the bisector contains 2D regions of the plane, as depicted in
Figure 9. It is assumed in what follows that points are in general position, that is, that there do not
exist two points that share either the same x or y coordinate.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 94:494–512
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Figure 9. Bisector of two points x1 D .�xp , 0/ and x2 D .xp , 0/ using the L1 norm. The pink regions
belong to the bisector as well. The dotted red line is the locus of points that make an equilateral triangle with

x1 and x2.

4.3. The equilateral triangle using the L1 norm

A triangle T .x1, x2, x3/ is equilateral in the L1 norm if

kx2 � x1k1 D kx3 � x1k1 D kx3 � x2k1.

It is possible to build such a triangle starting from Figure 8. We take again x1 D .�xp ,�yp/
and x2 D .xp ,yp/ and look for a point on the bisector of x1x2 located at a distance 2xp from the
endpoints of the segment. This point is x3 D .�xp , 2xp � yp/. There are two interesting special
cases to consider.

The first one (Figure 9) is when the segment x1x2 is aligned with the x�axis, yp D 0. The third
vertex is then any point on the segment between x13.�xp , 2xp/ and x23.xp , 2xp/, and the equilateral
triangle in the L1 norm is geometrically a half square (note that it is isosceles in the L2 norm).

The second case is when xp D yp . The third vertex of the equilateral triangle is then x3 D
.�xp , xp/, and the equilateral triangle is again a half square.

4.4. Circumcenter, circumradius, and circumsquare in the L1 norm

Consider a triangle T .x1, x2, x3/. Its circumcenter xc D .xc ,yc/ in the L1 norm verifies

kx1 � xck1 D kx2 � xck1 D kx3 � xck1.

The L1-circumcenter of the triangle is located at the intersection of the L1-perpendicular
bisectors.

The circumcircle in the L1 norm (also called circumsquare) is the smallest square centered at
the circumcenter that encloses the triangle (Figure 10). The circumradius R1.T , �/ is the distance
in the L1 norm between the circumcenter and any of the three vertices. It is given by

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 94:494–512
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Figure 10. Circumcenter xc and circumradius R1.T , �/ of a triangle Ti using the L1 norm. The
circumsquare is the red dotted square.

Figure 11. A right triangle. Perpendicular bisectors of the three segments are in yellow (edge x1x3), blue
(edge x2x3), and cyan (edge x1x2). Points x1c , x2c , and x3c are three circumcenters that correspond to the

three circumsquares C 1, C 2, and C 3.

R1 D
1

2
max..max.x1, x2, x3/�min.x1, x2, x3/, .max.y1,y2, y3/�min.y1,y2, y3//.

Consider now the right triangle of Figure 11 with two orthogonal sides aligned with the axis.
This example illustrates two counterintuitive properties of circumcenters and circumradii in L1

norm. First, the circumcenter is not unique: any point xc on the semi-infinite broken line x1cx2cx3c is
equidistant to x1, x2 and x3, that is, kx1 � xck1 D kx2 � xck1 D kx3 � xck1. The circumradius
is thus not unique, and the circumcenters located between x1c and x2c correspond to the smallest
circumradius. The circumsquares C 1 and C 2 centered at x1c and x2c have the same size. Then, for
xc between x1c and x2c , the circumradius increases, as depicted on the figure. Note that circumcenter
and circumsquare are unique when the points are in general position.

One interesting fact is that the computation of circumcenters and circumradii in the L1 norm is
a very stable numerical operation.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 94:494–512
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5. A FRONTAL DELAUNAY MESHER IN THE L1 NORM

Let us recall briefly the pros and cons of the two main approaches for mesh generation. Advancing
front techniques start from the discretization of the boundary (edges in 2D). The set of edges of
the boundary discretization is called the front. A particular edge of this front is selected, and a new
triangle is formed with this edge as its base, and the front is updated accordingly. The algorithm
advances in the domain until the front is emptied and the domain is fully covered by triangles. The
main advantage of advancing front techniques is that they generate points and triangles at the same
time, which makes it possible to build optimum triangles, for example, equilateral triangles. The
main drawback of the method is that parts of the front advance independently, leading to possible
clashes when they meet.

Delaunay-based mesh generation techniques are more robust because a valid mesh exists at each
stage of the mesh generation process. Yet, inserting a point using the Delaunay kernel requires the
creation and the deletion of a number of triangles, so that there is less control on the shapes of the
element than in the advancing front technique.

The frontal Delaunay approach makes the best of both techniques. As it is based on a Delaunay
kernel, a valid mesh is maintained at every stage of the process. Yet, some kind of front is defined in
the triangulation, and points are inserted in a frontal manner. The process stops when every element
of the mesh has the right size according to the size field ı.x/.

The ideas of the new frontal-quad algorithm are inspired by the frontal Delaunay approach of [9].
Consider a surface S , a mesh size field ı.x/, a cross field �.u/, and a conformal parametrization

with a metricM.u/. An initial mesh T0 is constructed in the parameter plane that contains the points
of the discretization of the boundaries only. An adimensional L1-meshsize

hi D
R1.Ti , �.u//

ı.u/j detM.u/j1=4
D
R1.Ti , �.u//

ı0.u/

is defined for each triangle Ti of T0. Quantities �.u/, M.u/, and ı.x.u// are evaluated at the usual
centroid of the triangle. Triangles are then classified into three categories:

1. A triangle is resolved if hi 6 hmax.
2. A triangle is active if hi > hmax, and either one of its three neighbors is resolved or one of its

sides is on the boundary of the domain.
3. A triangle is waiting if it is neither resolved nor active.

We choose hmax D 4=3. This choice is standard in the domain of mesh generation [15]. Figure 12 is
an illustration of the way triangles are classified in the algorithm. The front is defined as the set of
active triangles. Active triangles are sorted with respect to hi . Front edges are therefore defined as
those edges separating active and resolved triangles.

Figure 12. Illustration of the frontal algorithm with resolved (gray), active (red), and waiting (white)
triangles.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 94:494–512
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Figure 13. Illustration of the point insertion algorithm.

The frontal algorithm inserts a new point so as to form an optimal triangle with the edge
corresponding to the largest active triangle. Consider the edge x2x3 in Figure 13 and assume that it
corresponds to the largest active triangle of the mesh (the red triangle on Figure 13). For the discus-
sion, the coordinate system has been centered at the mid-edge point xm D 1

2
.x2 C x3/; and aligned

with the local cross field, this can be achieved by a translation and a rotation of angle �.xm/.
The position of the new point xn on the L1-perpendicular bisector L of x2x3 is chosen in

order to fulfill the size criterion ı.xm/. In order to create a new triangle Ti .x2, x3, xn/ of size
R1.Ti , �/D ı0.xm/, xn is placed at the intersection of L with the square Cn of side ı0.xm/ passing
through points x2 and x3 (Figure 13).

The following considerations should be made.

� The new point should not be placed beyond the center xc of the circumsquare of the active
triangle (red triangle in Figure 13), as this would create a triangle with a small edge xnx4.
Note that this limit case corresponds to a classical point insertion scheme where new points are
inserted at the center of the circumcircle of the worst triangle, yet in the L1 norm in this case.
� The new point should not be placed below the intersection xl of the bisector L and the cir-

cumsquare Cl of the resolved triangle .x1, x2, x3/. Inserting a point inside Cl would make the
resolved triangle invalid by means of the Delaunay criterion.
� If ı0.xm/D kx3�x2k1, then the optimal point is xn D xe . It corresponds to the largest triangle
Ti .xe , x2, x3/ that verifies R1.Ti , �/D ı0.xm/.

The equation of the rightmost segment of the bisector (y > 0, x > yp � xp) is

L� y C .yp � xp/D x.

One has

xc D
�
1

2
.x4 � xp/,

1

2
.x4C xp/� yp

�
,

xe D
�
ı0.xm/� xp C yp , ı0.xm/

�
and xl D

�
ı0.xm/, ı0.xm/C xp � yp

�
,

and the position of the optimal point is computed as follows:

xn D xe C t .xc � xe/

with

t Dmin

�
max

�
1,

kx3 � x2k1 � ı0.xm/
kx3 � x2k1 � kxc � x2k1

�
,�
kxl � xek2
kxc � xek2

�
.
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Figure 14. Illustration of the advancing front process with a uniform size field for the car hood
problem. White triangles are waiting triangles, red triangles are active triangles, and gray triangles are

resolved triangles.

Another important ingredient of the advancing front strategy holds in the fact that successive
fronts are initiated layer by layer. An initial front consists of the edges of the 1D boundary discretiza-
tion. The algorithm inserts points until every edge of the active front has been treated. Then new
fronts are created and emptied until no active triangle is left in the mesh as illustrated in Figure 14.

One last and important point is the choice of the Delaunay kernel to connect nodes at each stage of
the point insertion procedure. All arguments that have been developed concerning the point insertion
strategy advocates for using a Delaunay kernel in the infinity norm.

Yet, it has been observed experimentally that, in the case of finite element meshes with decent
point distribution properties, the Delaunay kernel in the standard L2 norm and the Delaunay kernel
in the L1 norm give similar triangulations. We have then chosen to use a standard Delaunay kernel
for connecting points because such a kernel is available in most mesh generators.‡ As an example,
Figure 15 shows the Voronoi diagram and the Delaunay triangulation of a set of points in the L1

norm. Although the Voronoi diagram is significantly different from a standard L2-based Voronoi
diagram, the triangulation (in red) is very similar to a usual Delaunay triangulation. To be specific,
only five edge swaps are necessary to modify the mesh of Figure 15 and transform it into a standard
Delaunay triangulation. Lévy and Liu reached the same conclusion in their (LPCVT) approach [8]
where they minimize the Lloyd energy in high-order norms on the standard Voronoi.

‡This is the case in Gmsh [16].
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Figure 15. Voronoi diagram (dark lines) and Delaunay triangulation, both in the L1 norm.

6. MESH QUALITY MEASURES

For mesh validation purposes, a number of useful quality measures for quadrilateral elements are
now defined.

6.1. Quadrilateral shape measure

Consider a quadrilateral element q and its four internal angles ˛k , k D 1, 2, 3, 4. We define the
quality �.q/ of q as

�.q/Dmax

�
1�

2

 
max
k

�ˇ̌̌ 
2
� ˛k

ˇ̌̌�
, 0

�
. (4)

This quality measure is 1 if the element is a square and 0 if one of its angles is either 60 or > . The
average element quality over a mesh N� and the worst element quality in a mesh �w are also useful
in the context of finite element simulations.

6.2. Size field efficiency

The adimensional length of the vector y D b � a of R3 with respect to the non-uniform size field
ı.x/ is defined as

l D kyk

1Z
0

1

ı.aC ty/
dt . (5)

An optimum mesh in terms of size is a mesh for which the adimensional size li of all edges is equal
to 1. It is of course impossible in practice to have such an optimum mesh. Therefore, the efficiency
index [15] � of a mesh is defined as the exponential of the mean value of the difference di between
each edge’s length li and one, that is,

�Œ%�D 100 exp

 
1

ne

neX
iD1

di

!
, (6)

with di D li � 1 if li < 1, di D
1

li
� 1 if li > 1 and ne the number of edges in the mesh. Surface

mesh algorithms usually produce triangular meshes with typical values of � around � D 85%, that
is, with adimensional sizes around 1=

p
26 li 6

p
2.
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6.3. Mesh topology criteria

Good quadrilateral meshes are made of long layers of quadrilaterals that typically intersect orthogo-
nally with each other. The optimal topology of a vertex in such a mesh is a vertex with four adjacent
quadrangles. The parameter d4 is the percentage of vertices in the mesh that have four quadrilateral
neighbors. Boundary vertices are not taken into account here. Finally, dmax is the maximum number
of quadrilaterals adjacent to one vertex.

6.4. A simple example

As a first example of the application of Delquad, let us consider the benchmark problem that has
been first defined by Lewis [17]. We consider a rectangular domain with .x,y/ 2 Œ�1.25, 1.25� �
Œ�0.5, 1.25�. We choose

ı.x,y/D
1

100

�
1C 30

�
x � y2

�
2C .1� x/2

�
.

The cross-field directions have been analytically chosen in such a way that it correspond to the
orientation of the gradient of the size field ı.

This simple test case has been used for benchmarking quad meshers in [4, 7]. We therefore com-
pare our results with the results of those two papers. The technique proposed in [4] is an indirect
technique that produces nearly all-quad meshes. The algorithm proposed in [7] is a mesh adapta-
tion algorithm. It produces quad-dominant meshes using L1 norm arguments for optimizing point
positions and element connectivities (Figure 16).

The quality of the quadrilaterals in this mesh is substantially superior to the quality of the merged
elements obtained by Borouchaki and Frey [4], that is, an average quality of 0.85 versus 0.63. The
average quality produced by Delquad is similar to the one found in [7] while the percentage of
quadrilateral elements in [7] is only 84% (Table I).

Figure 16. Mesh with the size field proposed by Lewis et al. [17]. The Delquad point position algorithm
was used, and the triangular mesh was subsequently recombined using Blossom-quad.

Table I. Quality of the quad meshes for the analytical test case of Lewis et al. [17].

Quad quality Degree vertices Efficiency Percent quads

Algorithm �w N� d4.%/ dmin dmax �

Borouchaki [4] 0.23 0.63 91 3 6 — 97
Tchon [7] 0.53 0.89 — — — — 84
Delquad 0.25 0.85 87 3 6 88% 100

We present values for the minimum quality �w , mean quality N�, percentage of vertices of degree 4, minimal and
maximal values for the degree of vertices, and efficiency index � .
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Figure 17. Pictures of different meshes of the car hood as well as mesh statistics.

7. INDIRECT QUADRILATERALIZATION

The Delquad algorithm is an indirect algorithm. It first builds a triangular mesh, and a triangle
merging procedure is subsequently used to generate quadrilaterals. We have shown in [6] that it is
possible to find an optimal merging procedure that never leaves isolated triangles in the mesh.

The main advantage of the Delquad algorithm is that the points are placed in such a way that
the triangle elements merge into quadrangles of optimal size and orientation. In order to illustrate
this, quadrilateral meshes have been generated from different initial triangular meshes, obtained
by a frontal algorithm [9] (favoring equilateral triangles) or the Delquad algorithm (favoring
right triangles).

We use the following nomenclature. Concerning the point insertion algorithm, F stands for the
Frontal algorithm of Gmsh [9, 16], whereas D stands for the new Delquad procedure. Concerning
the recombination, the letter B denotes a mesh recombined using the Blossom-quad algorithm [6].

On Figure 17, the frontal mesh (F) contains 3524 triangles, whereas the Delquad mesh (D)
contains only 3066 triangles. The ratio 3066=3524 D 0.87 is very close to the theoretical ratiop
3=2 D 0.866 (Section 1). The meshes (FB) and (DB) of Figure 17 are recombined meshes on

the basis of the frontal and the Delquad algorithm, respectively. The (FB) mesh is typical of a
quadrilateral mesh obtained by recombination of a triangular mesh with mostly equilateral trian-
gles. Clearly, the mesh (DB) is better with respect to all criteria. It contains 13% less elements,
which is very close to the expected value. As a consequence, the efficiency index of (DB) is much
better than the one of (FB). The unstructured orientation in the (FB) implies that the mesh has
to accommodate various changes of direction of the quadrilateral layers, leading to many vertices
that do not have the optimal number of four adjacent quadrangles. The Delquad algorithm not only
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generates meshes with the right number of points but also generates meshes with the right topology:
about 81% of the vertices of mesh (DB) have exactly four adjacent quadrangles.

Even though triangular meshes generated with the new Delquad algorithm are close to optimal
nearly everywhere, the (ABL) is the quad mesh obtained with an Lp Lloyd’s energy minimiza-
tion computed before the Blossom recombination. The triangulation remains sub-optimal in regions
where fronts meet (see mesh (D) of Figure 17). In a recent paper, Lévy and Liu [8] have proposed
an interesting approach, called LPCVT, for quadrilateral and hexahedral smoothing on the basis
of an extension of the well-known Lloyd algorithm [18]. In [19], an alternative version of Lévy’s
approach has been proposed and applied to finite element meshes by the authors of this paper.

The LPCVT smoothing largely enhances the topology and the shape of the quadrilaterals when
it is applied to a frontal triangulation. Yet, because our version of the LPCVT does not remove ver-
tices, the mesh efficiency index is not enhanced. Meshes smoothed with the LPCVT technique are
denoted by the letter L.

Mesh (DLB) that combines Delquad, LPCVT, and Blossom-quad gives the best results with
respect to all mesh statistics. Note that the (DB) mesh is already a very good mesh with statis-
tics that are close to (DLB). The LPCVT is a rather complex procedure that is typically more
expensive in CPU than the triangulation itself, even though there is room for improvement in our
LPCVT algorithm.

8. EXAMPLES

8.1. Mechanical part

The first example is a mechanical part composed of 114 surfaces (Figure 18). The quadrilateral mesh
has been generated automatically with the new algorithm, the only control parameter being a uni-
form mesh size field. The mesh is composed of 66,998 quads and was generated in 40 s. This time
includes the generation of a first triangular mesh, the computation of cross fields on all surfaces,
and the conformal reparametrization of all non-planar surfaces. The mesh statistics are as follows:
� D 97%, d4 D 91%, dmax D 6, N� D 0.95, �w D 0.1. The mesh generated by our approach for
some of the planar and cylindrical surfaces of this particular geometry was a structured mesh. This
happened, however, automatically, without user interaction or internal heuristics of the mesher. This
explains the exceptionally high value of � and N� in this specific problem.

8.2. Falcon aircraft

As a second example, the Falcon aircraft of Figure 19 is considered. A surface mesh has been
generated using a standard surface mesher, whose triangles were patched together to create the
compounds of surfaces represented with different colors in the figure. Each compound surface has
been reparametrized separately by means of a conformal map created using the techniques described

Figure 18. Quadrilateral mesh (DB) of a mechanical part.
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Figure 19. Surface triangular mesh of a Falcon aircraft (left) and mesh size field (right). Colors in the left
figure are indicative of the different surfaces of the model.

Figure 20. Parametrizations of the surfaces of the Falcon aircraft in the ¹u, vº plane.

in [8,11–13]. The mesh size field is composed of a uniform bulk size field ıb D 0.1 augmented with
line and point sources at critical zones of the aircraft, as depicted on Figure 19.

The images of the different surfaces in their respective parameter plane can be seen on Figure 20.
The resulting mesh is presented on Figure 21. The mesh is composed of 53, 297 quadrangles. The
total time for the surface meshing was 22 s. This time includes

� the reparametrization of the 12 surfaces (3 s),
� the Delquad algorithm applied to the 12 surfaces (10 s), and
� the Blossom-quad recombination algorithm applied to the 12 surfaces (9 s).

The average and worst qualities of the mesh are N�D 0.86 and �w D 0.17, which can be considered
as excellent. The efficiency of the mesh is � D 0.92, which is again very good.
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Figure 21. Final (DB) quadrilateral surface mesh of the Falcon aircraft.

9. CONCLUSION

A new method for automatic surface quadrilateralization has been proposed. The new algorithm
uses distances in the L1 norm as a base for inserting new points and generate edges of the right
size and orientation.

The new method has the following advantages:

� It is easy to implement as an extension of any robust 2D Delaunay kernel.
� The local orientation of the quadrilateral mesh is controlled by the cross field and not by the

meshing algorithm itself.
� The new method accommodates size fields with strong variations.
� The method is fully automatic.
� The quality of the quadrilateral elements is very high in all aspects.

The method as presented in this paper requires the availability of a conformal parametrization of
the surfaces. In this work, we overcome this drawback by systematically reparametrizing the sur-
faces that we deal with in a conformal way [12, 13]. Even though reparametrization techniques are
cheap and robust, this reparametrization step can be seen as a limitation of the method. One first
extension of this work will be to extend the Delquad approach to anisotropic quad meshing. An
anisotropic quadrilateral mesh is ideally composed of parallelograms of controlled sizes and shear.
Anisotropic metrics in the L1 norm can be defined (unit circles become parallelograms), and the
whole approach presented in this paper can be reproduced, yet using an anisotropic Delaunay kernel.
This extension will allow to deal with surfaces that are not parametrized in a conformal way.

The automatic generation of hex-dominant meshes has been considered a challenge in the finite
element community for many years now. There exists an extension of the Delquad approach pro-
posed here to a Delhex algorithm that would generate 3D tetrahedral meshes with the right number
of points and the right edge orientation to be recombined optimally into hexaedra.
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