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Fig. 1. Given a quadrangulation of the topological sphere, our algorithm creates hexahedra on the boundary until the unmeshed cavity matches the boundary
of a pre-computed hex mesh that is merged to obtain the final combinatorial hexahedral mesh.

This paper tackles the challenging problem of constrained hexahedral mesh-

ing. An algorithm is introduced to build combinatorial hexahedral meshes

whose boundary facets exactly match a given quadrangulation of the topo-

logical sphere. This algorithm is the first practical solution to the problem. It

is able to compute small hexahedral meshes of quadrangulations for which

the previously known best solutions could only be built by hand or contained

thousands of hexahedra. These challenging quadrangulations include the

boundaries of transition templates that are critical for the success of general

hexahedral meshing algorithms.

The algorithm proposed in this paper is dedicated to building combina-

torial hexahedral meshes of small quadrangulations and ignores the geo-

metrical problem. The key idea of the method is to exploit the equivalence

between quad flips in the boundary and the insertion of hexahedra glued to

this boundary. The tree of all sequences of flipping operations is explored,

searching for a path that transforms the input quadrangulation Q into a

new quadrangulation for which a hexahedral mesh is known. When a small

hexahedral mesh exists, a sequence transforming Q into the boundary of a

cube is found; otherwise, a set of pre-computed hexahedral meshes is used.

A novel approach to deal with the large number of problem symmetries

is proposed. Combined with an efficient backtracking search, it allows small

shellable hexahedral meshes to be found for all even quadrangulations with

up to 20 quadrangles. All 54, 943 such quadrangulations were meshed using
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no more than 72 hexahedra. This algorithm is also used to find a construc-

tion to fill arbitrary domains, thereby proving that any ball-shaped domain

bounded by n quadrangles can be meshed with no more than 78 n hexahedra.

This very significantly lowers the previous upper bound of 5396 n.
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1 INTRODUCTION
Volumetric mesh generation is a required step for engineering anal-

ysis. Robust algorithms are able to automatically produce a tetrahe-

dral mesh constrained to have a given triangulation as its boundary,

e.g. [Si 2015]. However, subdivisions into hexahedra (cube-like cells)

are often preferred over tetrahedrizations for their good numerical

properties such as a better convergence with fewer elements [Shep-

herd and Johnson 2008] and faster assembly times [Remacle et al.

2016]. Yet, the hexahedral meshing problem, and more particularly

the boundary constrained variant, remains open to this date.

Finding solutions to the boundary constrained hex-meshing prob-

lem is crucial for hex-meshing algorithms that use a few simple

templates to reduce the complexity of the general meshing prob-

lem to a small set of inputs (e.g. [Mitchell 1999; Yamakawa and

Shimada 2002]). More importantly, hex-dominant mesh generation

techniques usually leave small cavities unmeshed [Yamakawa and

Shimada 2003] and filling them is one of the missing pieces to the

more general problem of all-hex mesh generation.

This paper introduces an algorithm that solves the combinatorial

constrained hex-meshing problem for small quadrangulation of

ACM Trans. Graph., Vol. 38, No. 4, Article 53. Publication date: July 2019.



53:2 • Kilian Verhetsel, Jeanne Pellerin, and Jean-François Remacle

Fig. 2. Schneiders’ pyramid [Schneiders 1996] and the tetragonal trapezo-
hedron are two extremely challenging boundaries for combinatorial con-
strained hexahedral mesh generation.

the sphere (Figure 1). Given a quadrangulation of the sphere Q , it
determines a set of combinatorial cubes H such that:

(1) the intersection of any two hexahedra h1,h2 ∈ H is a combi-

natorial face shared by h1 and h2 (i.e. the empty set, a vertex,

an edge, or a quadrangle);

(2) all quadrangular faces are shared by at most two hexahedra;

and

(3) the set of boundary quadrangle faces (adjacent to exactly one

hexahedron) is equal to Q .

This is an extremely challenging problem, even when the subse-

quent problem of finding a geometrical embedding is ignored, and

for which no practical method exists. The existence of hexahedral

meshes for all even quadrangulation of the topological sphere has

been proven by Mitchell [1996], yet seemingly innocuous quadran-

gulations such as the 16-quadrangle pyramid (Schneider’s pyramid)

or the 8-quadrangle tetragonal trapezohedron (Figure 2) are notori-

ous failure cases of general purpose meshing methods.

Eppstein [1999a] shows how the interior of a quadrangulated

sphere can be meshed with a linear number of hexahedra; this

construction was later generalized to all domains which admit hex-

ahedral meshes [Erickson 2014]. Both methods reduce the problem

to meshing a few quadrangulated spheres, but neither provide ex-

plicit hex meshes for these cases. Previous attempts to mesh these

templates have been unsuccessful [Mitchell 2002; Weill and Ledoux

2016].

One method only is able to generate hexahedral meshes for the

templates of Eppstein and Erickson [Carbonera and Shepherd 2010].

The drawback is that it requires 5396n hexahedra to construct a non-

degenerate hexahedral mesh of a ball bounded by n quadrangles.

Contributions. The first contribution of this paper is a practical

algorithm to build combinatorial hexahedral meshes of reasonable

size for small quadrangulation of the sphere. The algorithm is based

on quad flips, a set of operations to modify quadrilateral meshes

and whose application can be interpreted as the construction of a

hexahedron. Given a quadrangulated sphere Q , a hexahedral mesh

bounded by Q is built by exploring the space of flipping operations

that can be applied to Q . A solution is then obtained by finding

a sequence of operations that transforms Q into the boundary of

a cube (section 3). When this search space is too large, the algo-

rithm instead searches for a sequence of operations transforming

Q into the boundary of any mesh within a library of pre-computed

hexahedral meshes (section 4).

This algorithm is used to construct combinatorial hexahedral

meshes for all 54, 943 quadrangulations of the sphere with up to 20

quadrangles and which admit a hexahedral mesh. The computed

hexahedral meshes contain at most 72 hexahedra.

The last contribution of this work is to significantly lower the

upper bound needed to mesh arbitrary domains. The construction of

Erickson is made fully explicit by computing hexahedral meshes for

its two quadrangulated templates. This proves that an arbitrary ball

bounded by n quadrangles can be meshed using only 78 n hexahedra.

An implementation of all algorithms introduced in this paper is

provided as free software and can be found in the supplementary

materials or from https://www.hextreme.eu.

2 RELATED WORK
Hexahedral mesh generation is a thriving field of research, with a va-

riety of proposedmethods. These includemulti-block decomposition

methods using frame-field parametrizations [Kowalski et al. 2014;

Liu et al. 2018; Lyon et al. 2016; Nieser et al. 2011], hex-dominant

meshing methods [Baudouin et al. 2014; Gao et al. 2017; Pellerin

et al. 2018; Sokolov et al. 2017; Yamakawa and Shimada 2003], octree-

based methods [Ito et al. 2009; Maréchal 2009; Qian and Zhang 2010;

Zhang et al. 2012], and polycube-based methods [Fang et al. 2016;

Gregson et al. 2011; Han et al. 2011; Yu et al. 2014].

A detailed overview of these various approaches is beyond the

scope of this paper, as most methods do not address the problem

of generating meshes with a given boundary quadrangular mesh.

The rest of this section focuses on methods tackling the constrained

problem.

2.1 Existence proofs
Existence theorem for ball inputs. Thurston [1993] and Mitchell

[1996] independently showed that a ball bounded by a quadrangu-

lated sphere can be meshed with hexahedra if and only if the number

of quadrangles on the boundary, n, is even. The proof is based on the
dual cell complex of quadrangular and hexahedral meshes. The dual

complex of a quadrangular mesh is obtained by placing a vertex

at the center of each quadrangle and adding edges between the

vertices corresponding to adjacent quadrangles. Grouping edges

traversing opposite edges of a same quadrangle, the dual complex

is interpreted as an arrangement of curves (Figure 3). Similarly, the

dual of a hexahedral mesh can be interpreted as an arrangement

of surfaces [Murdoch et al. 1997]. In Mitchell’s proof, an arrange-

ment of surfaces bounded by the dual arrangement of curves of

the input quadrangulation is first constructed. For curves with an

even number of self-intersections (including curves with no self-

intersections), a disk is constructed inside the domain and a regular

homotopy between a circle and the curve can be used to create a

manifold bounded by that curve. Curves with an odd number of

self-intersections are paired up arbitrarily. For each pair, a manifold

bounded by the two curves is constructed by computing a regular

homotopy between the two of them. This arrangement is not in
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Fig. 3. The dual of a quadrangulated mesh (black edges) can be seen as an
arrangement of two curves. The dark blue curve is simple, the red curve
intersects itself 8 times. This example mesh is Schneider’s pyramid.

general the dual of a hexahedral mesh, so the next step of the con-

struction is to add new surfaces completely inside the ball until all

connectivity requirements of a hexahedral mesh are met.

Linear-complexity meshing. The construction of Mitchell can ne-

cessitate up to Ω(n2) hexahedra where n is the number quadrangles.

Eppstein showed this was the case and proposed a different con-

struction which guarantees the use of O(n) hexahedra [Eppstein
1999a]. Eppstein’s algorithm first subdivides each quadrangle into

two triangles, so that a tetrahedral mesh of the interior can be com-

puted. After subdividing each tetrahedron into four hexahedra, a

hexahedral mesh is obtained. However, its boundary does not match

the initial input quadrangulation. This is solved by inserting buffer

cells: for each quadrangle, add a cube, and glue one of its face to the

original quadrangle; then, subdivide the opposite face into six quad-

rangles. The six new quadrangles are matched with those obtained

from subdividing the original quadrangles during the previous step.

The four remaining sides of the buffer cells are carefully subdivided

into either two or three quadrangles, so that each buffer cell is

bounded by an even number of quadrangles. Mitchell’s proof can

then be invoked to show that each buffer cell can be subdivided into

a finite number of hexahedra.

Generalization to other inputs. Generalizing the previous results,

Erickson [2014] gives necessary and sufficient conditions for the ex-

istence of a hexahedral mesh of a domainΩ bounded by a quadrangu-

lation Q . The requirement is that every null-homologous subgraph

of the input quadrangulation (i.e. every subgraph which bounds

an embedded surface of Ω) contain an even number of edges. The

construction of Erickson is similar to the one proposed by Eppstein,

and also starts by computing a tetrahedral mesh of the domain,

subdividing it into a hexahedral mesh, and inserting buffer cells

to get a complete mesh with the correct boundary. The last step is

to subdivide the buffer cells of two different types (Figure 4) into

hexahedra, which is again shown to be possible from Mitchell’s

proof. Like Eppstein, Erickson does not give an explicit construction

of the hexahedral meshes of the buffer cells that are the base of its

proofs.

Fig. 4. If hexahedrizations of these two quadrangulated spheres exists, then
it is possible to construct hexahedrizations for all other quadrangulated
surface [Erickson 2014].

A constructive method. Carbonera and Shepherd [2010] give the

first completely explicit construction. Their algorithm first adds hex-

ahedra inside the domain, guaranteeing that the dual arrangement

of the boundary of the remaining region contain no self-intersecting

curve. Buffer cells are then inserted to transition to a mesh where

each quadrangle has been subdivided into four quadrangles. The rest

of the domain is then filled using pyramids. A complete hexahedral

mesh is obtained after subdividing the pyramids into hexahedra.

Given a topological ball bounded by n quadrangles, their construc-

tion produces a mesh of 76 n hexahedra. This mesh is degenerate: it

contains quadrangles sharing multiple edges and hexahedra sharing

multiple faces. A combinatorially valid mesh can be obtained by

further refining the mesh [Mitchell and Tautges 1994]. This method,

however, requires as many as 5396 n hexahedra to build a hexhahe-

dral mesh bounded by quadrangulation of size n.

2.2 Constrained hexahedral meshing in practice
The methods in the previous section are impractical, they create far

more hexahedra than necessary. In practice, less general methods

have been used to obtain smaller meshes.

Whisker Weaving. Whisker Weaving has been proposed by [Taut-

ges et al. 1996]. The idea is to use a topological advancing front to

construct the dual of a hexahedral mesh. The algorithm initially as-

sumes that the final mesh will contain one dual surface for each dual

curve of the input quadrangulation. Hexahedra are created inside

the domain by creating intersections between three of these sheets,

until the entire domain is filled. To choose between the multiple

possible operations, heuristics based on geometric information such

as the dihedral angle of faces are used. These heuristics are often

not enough to completely fill the domain.

Dual cycle elimination. Müller-Hannemann [1999] proposed a

method based on dual cycle eliminations. At each step of the algo-

rithm, one of the curves of the dual mesh is removed, matching this

elimination as the insertion of a layer of hexahedra. The new bound-

ary after removing this cycle bounds the part of the input domain

which has not been meshed yet. This process is repeated until the

boundary matches that of a single cube. This method succeeds for
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certain classes of input quadrangulations, but fails for the common

cases where the dual contains self-intersecting curves (e.g. Figure 3).

2.3 Searching for hexahedral meshes
Some specific cases have particularly attracted the attention of the

research community: Schneiders’ pyramid [Schneiders 1995] and

the octogonal spindle (Figure 2). The ad-hoc constructions for the

pyramid proposed Yamakawa and Shimada [2002, 2010] have long

been the smallest known solutions. Recently, computer searches

have been used to find substantially smaller solutions.

Verhetsel et al. [2018] exhaustively explore the space of all pos-

sible hexahedral meshes up to a given number of vertices by con-

sidering the possible groups of 8 vertices that can be built without

creating an invalid mesh. The search space is usually too large for a

solution to be found except in fairly simple cases. Starting from the

88-element solution of Yamakawa and Shimada and successively

coarsening small parts of the original mesh, the method of Verhetsel

et al. allowed the construction of a 44-element hex mesh of the

pyramid.

By considering a smaller search space, Xiang and Liu [2018]

construct a mesh of the pyramid with 36 hexahedra by building a

shelling of the resulting hexahedral mesh. Starting from a single

cube, the algorithm of Xiang and Liu considers all possible ways

to add one hexahedron while maintaining a mesh which is both

valid and combinatorially equivalent to a topological ball. The pro-

cess is stopped when the boundary of the mesh matches the target

quadrangulation.

3 EXHAUSTIVE SEARCH

3.1 Overview
Given a quadrangulation of the sphere Q , we describe an algorithm

to enumerate all hexahedral meshes bounded by Q and which can

be constructed using quad flips (algorithm 1). To force the algorithm

to terminate, the search is limited to meshes with a maximum of

Hmax hexahedra and a maximum Vmax of vertices. In section 4, we

then extend the approach to search for hexahedral meshes that are

prohibitively large for an exhaustive search of this kind.

The algorithm detailed in this section does not search the entire

space of hexahedral meshes, but only the space of so-called shellable

meshes, which can be explored efficiently using quad flips (subsec-

tion 3.2). This space is explored in its entirety by considering all

possible sequences of quad flips that correspond to valid hexahe-

dral meshes (subsection 3.3). Because many different sequences of

flipping operations represent the same mesh, most of this section

focuses on how to account for the symmetries of the input quad-

rangulation, in order to avoid generating different sequences of

quad flips corresponding to isomorphic hexahedral meshes (subsec-

tion 3.4).

3.2 Shellability and quad flips
Our method only considers a specific class of meshes: shellable

hexahedral meshes. Shellability is an important and useful com-

binatorial concept in the study of polytopes and cell complexes

[Ziegler 1995]. Slightly different notions of shellability are found in

the literature. We use that of pseudo-shellings [Bern et al. 2002] or

ALGORITHM 1: Search: Enumerate shellable hexahedral meshes

Input: Q : A quadrangulation of the sphere;

H : A partial mesh;

Hmax: maximum number of hexahedra in a solution;

Vmax: maximum number of vertices in a solution.

if Hmax = |H | then return;
else if Visited-Symmetric-Counterpart(H ) then

return ; // subsection 3.4

else if Q ≈ a cube then
h ← the hexahedron bounded by Q ; // subsection 3.3

if Is-Compatible(H , h) then Output-Solution(H ∪ {h });
end
foreach quad flip F do
(Q ′, h) ← Perform-Flip (F ,Q ) ; // subsection 3.3

if Num-Vertices(H ∪ {h }) ≥ Vmax then continue;
if Is-Compatible(H , h) then

Search(Q ′, H ∪ {h }, Hmax,Vmax);

end
end

Fig. 5. (top) a shelling of a quadrangulation; (bottom) not a shelling because
a hole is present after inserting the first four quadrangles.

topology-preserving shellings [Müller-Hannemann 1999]. This type

of shelling is an ordering of the hexahedra (H1,H2, . . . ,Hn ) of a

hexahedral mesh such that any prefix

⋃
0≤i<k Hi is homeomorphic

to a ball (Figure 5).

This definition implies that any hexahedron Hk must intersect

the union of the previous hexahedra in one of six possible patterns.

Gluing a hexahedron to one of these patterns modifies the boundary

of themesh locally (Figure 6). The transitions between these patterns

are known as quad flips or bubble moves [Funar 1999]. These flipping

operations are therefore a valuable building block to explore the

space of shellable meshes.

Note that not all hexahedral meshes admit a shelling order —

see for example Furch’s ball [Furch 1924]. Hence, by relying on

these flipping operations to build hexahedral meshes, our method

is inherently unable to construct certain meshes. Nonetheless, we

can guarantee that a solution still exists: all quadrangulations of

the sphere with an even number of quadrangles admit a shellable

hexahedral mesh [Bern et al. 2002].
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++++

Fig. 6. Equivalence between quad flips and hex creation. Adding one hexa-
hedron glued to the top row red quadrangles, modifies locally the quads
and results in the bottom row grey quadrangles. This operation is the key
idea of the algorithm to search shellable meshes.

3.3 Identifying and Performing Flips
For each quadrangulation Q visited during the search, all possible

quad flips need to be identified. Each flip corresponds to a different

hexahedron that can be inserted in the mesh. The algorithm succes-

sively tries adding all of them to the current mesh. Because flips are

performed by starting from the target boundary, the hexahedra that

are constructed during this process form the reverse of a shelling

order (this is one difference with the search method of Xiang and

Liu [2018]). Müller-Hannemann [1999] construct the hexahedra in

the same order, but our method, instead of only considering one

mesh, explores the entire tree of possible sequences of quad flips.

The identification of all possible flips is split into two steps: first,

the boundary Q is inspected to identify all occurrences of the 6

patterns from Figure 6. Second, those flips that correspond to the

insertion of hexahedra that would make the mesh invalid are filtered

out.

The hexahedron inserted by performing a flip is obtained by

computing the union of the pattern before and after the flip. To

determine whether or not this hexahedron is compatible with the

mesh constructed so far, an efficient test is devised by considering

three relations between the vertices of the mesh:

(1) E, the edges of the mesh;

(2) DQ , the diagonals of the quadrangles in the mesh;

(3) DH , the interior diagonals of the hexahedra in the mesh.

These relations are disjoint in any combinatorial hexahedral mesh.

For example, if a pair (u,v) is an edge, it is not the diagonal of any

quadrangles or hexahedra. This leads to an efficient implementation

of the test: simply maintain the three sets E, DQ , and DH , and verify

that, after adding a new hexahedron:

(1) the three sets E, DQ , and DH remain disjoint;

(2) the new quadrangles in the hexahedron share no diagonals

with any other quadrangle in the mesh;

(3) none of the four interior diagonals of the new hexahedron

are an interior diagonal of some other hexahedron.

It is easy to verify that when any two hexahedra share only a

vertex, an edge, or a quadrangle, these conditions are met. To verify

their sufficiency, consider two hexahedra with an invalid intersec-

tion pattern. If an interior diagonal of one hexahedron is contained

in the other hexahedron, one of the rules is always violated: rule 3

is violated if it is also an interior diagonal of the second hexahedron,

and rule 1 is violated if it is an edge or the diagonal of a quadrangle.

The only remaining cases to consider are those where the shared

vertices are part of two distinct quadrangles. In all of those cases,

the diagonal of one of those quadrangles appears in the other one.

If it appears as an edge, rule 1 is violated; if not, both quadrangles

have a shared diagonal, violating rule 2.

The insertion of the last hexahedron requires special treatment.

This step does not correspond to a quad flip: when the boundary

of the unmeshed region is isomorphic to the boundary of a cube,

a hexahedron is inserted to finish the mesh. Detecting whether

or not the current boundary corresponds to that of the cube is

straightforward: simply verify that the boundary has exactly 6 faces.

3.4 Symmetry
There are many distinct sequences of quad flips which represent

identical hexahedral meshes. It is thus important to only consider a

single representation for each hexahedral mesh constructed during

the search, lest most of the computation time be spent generating

different representations of equivalent solutions.

One technique commonly used to deal with this type of issue

is to define a canonical representation for objects under construc-

tions, so that all those that belong to a given isomorphism class are

transformed into the same representative element [Brinkmann and

McKay 2007; Burton 2011]. A significant portion of the execution

time is then spent computing the canonical representations of par-

tial solutions, which may completely change after every operation

[Jordan et al. 2018]. The symmetry breaking method used within our

algorithm instead compares partial solutions directly, and exploits

the tree-shaped structure of the search in order to reuse results from

previous computations.

The strategy described in this section is based on Symmetry Break-

ing via Dominance Detection (SBDD) [Fahle et al. 2001]. Consider the

search tree explored by the algorithm: its nodes are partial meshes

constructed during the search, and edges correspond to the insertion

of new hexahedra through quad flips. The objective is to prune from

this search tree nodes that correspond to meshes that have already

been explored (up to symmetry). This is accomplished using the

following steps:
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ALGORITHM 2: Compute-Symmetry: Computes one symmetry

from an initial assumption

Input: Q : A quadrangulation of the sphere; a quadrangle q0 ∈ Q ;

(x , y, z,w ), the image of q0
Output: The symmetry σ that maps q0 to (x , y, z,w )
Initialize σ , mapping q0 to (x , y, z,w );
Initialize a queue with the 4 edges of q0;
VisitedA ← {q0 };
VisitedB ← {(x , y, z,w )};
Seen← {q0 };
while the queue is not empty do

Dequeue an edge (a, b);
q ← the quadrangle containing (a, b) and not in VisitedA ;

q′ ← the quadrangle containing σ (a, b) and not in VisitedB ;

foreach vertex v in q do
v ′ ← the corresponding vertex in q′;
if σ (v) is undefined and σ−1(v ′) is undefined then

σ (v) ← v ′ ; // Extend the map σ
σ−1(v ′) ← v ;

else if σ (v) , v ′ or σ−1(v ′) , v then
fail ; // Stop upon contradiction

end
end
foreach edge e of q do

o ← the quadrangle on the other side of e ;
if o has not been seen before then

Seen← Seen ∪ {o };
Enqueue e ;

end
end
VisitedA ← VisitedA ∪ {q };
VisitedB ← VisitedB ∪ {q′ };

end
return σ ;

(1) first, the automorphism group of the input quadrangulation

is pre-computed;

(2) then, as the search tree is traversed, fully explored subtrees

are encoded into a sequence S ;
(3) for each new node, we determine whether or not it should be

pruned by comparing it against the nodes stored in S .

3.4.1 Computing the automorphism group. Given a quadrangula-

tion Q , we compute the set of its symmetries, known as its auto-

morphism group. A permutation σ of the vertices of Q is a sym-

metry if it preserves the set of quadrangles: for any quadrangle

(a,b, c,d) of Q , its image (σ (a),σ (b),σ (c),σ (d)) is also quadrangle

of Q , and every quadrangle (a,b, c,d) is the image of a quadrangle

(σ−1(a),σ−1(b),σ−1(c),σ−1(d)). Note that the orientations of the

quadrangles may be reversed by σ .
Symmetries are computed one at a time, by fixing some quad-

rangle qA ∈ Q and assuming that its image under a symmetry σ is

known to be qB ∈ Q . There are 8 different ways to map the vertices

of qA onto the vertices of qB , corresponding to the 8 symmetries of

a quadrangle. The entire permutation σ is uniquely determined by

this part of the map (Figure 7): the quadrangles adjacent to qA must

Fig. 7. Computation of a symmetry. Starting from the assumption that a
quadrangle is the image of some other quadrangle, the mesh is traversed
while computing the correspondence between all other vertices.

be the images of the quadrangles adjacent to qB under σ , and the

quadrangles adjacent to those must also be images of each other,

and so on, until the whole quadrangulation has been traversed (al-

gorithm 2). This process is well-defined because each edge is in at

most two quadrangles.

The entire set of symmetries is computed by considering all 8|Q |
possible ways to map an arbitrary quadrangle qA to any other quad-

rangle of Q . If an assumption is correct, a symmetry σ is obtained;

if not, a contradiction will be reached when trying to construct

the symmetry (two vertices mapping onto the same target vertex,

or a single vertex with two images under σ ). Because qA must be

the image of some quadrangle under any symmetry σ , this process
yields the entire automorphism group.

In the worst case, the entire automorphism group is determined

in O(|Q |2) operations. In practice, this quadratic time algorithm

outperforms more complex linear time algorithms designed for

planar graph isomorphism [Colbourn and Booth 1981; Eppstein

1999b] when applied to small quadrangulations, thanks to well-

tuned heuristics. In particular, our implementation stops the algo-

rithm as soon as two vertices of different degree are mapped onto

one another by the permutation under construction [Brinkmann

and McKay 2007].

Moreover, because this method does not use the planarity of the

graph, it is also more general. The only requirement is that the

input be a pseudomanifold: a combinatorial cell complex in which

every facet is contained in at most two distinct cells. Indeed, a
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H5 H6

H7 H8

H1 H2 H3 H4

é

H5 H6

é

H7

Fig. 8. A partially explored search tree and the sequence used to compare
the current node (in white) against the previously explored part of the tree.
No-goods are shown in red, and partially explored subtrees in blue.

variant of this method will be used to compare hexahedral meshes

in section 3.4.3, by having quadrangles take over the role of edges

in algorithm 2.

3.4.2 Encoding the search tree. An efficient traversal of the search

tree requires the search to stop as soon as the mesh under construc-

tion is the symmetric counterpart of a mesh that has previously

been constructed. In the previous section, the set of symmetries that

need to be considered was determined. This section now focuses on

efficiently encoding the set of hexahedral meshes that have been

constructed during the search.

Of course, the search tree is exponentially large, making it im-

possible to store every single mesh that is constructed during the

search. Instead, SBDD only stores information about the roots of

maximal fully explored subtrees, known as no-goods [Gent et al.

2006]. The current node should then be pruned if and only if the

mesh under construction is the symmetric counterpart of one of

the children of one of the no-goods. Note that a no-good is referred

as such even if some of its children are solutions, since it is not

desirable to compute the symmetric counterparts of those solutions.

No-goods can be stored efficiently thanks to the structure of the

search tree. Recall that each node within the search tree corresponds

to a partial hexahedral mesh, and each edge corresponds to the in-

sertion of a hexahedron. Nodes with a common ancestor in the tree

then share a common set of hexahedra as a prefix, and this prefix

only needs to be stored once (Figure 8). Upon visiting a new node,

the most recently added hexahedron is inserted in the sequence, fol-

lowed by a special branching symbol, indicating that the rest of the

sequence will encode the children of this node. Upon backtracking,

everything up to and including the last branching symbol of the

sequence is removed.

3.4.3 Dominance detection and pruning. The last part of our sym-

metry breaking method is the test used to prune nodes of the search

tree that do not need to be explored because any solution that could

be found by doing so has already been found. These nodes are said

to be dominated by one of the no-goods, i.e. they are the symmetric

counterpart of one of the children of one of the nodes that have been

previously explored and stored in the sequence shown in Figure 8.

Since the search involves exploring exponentially many nodes,

this dominance test must be implemented without explicitly compar-

ing the current node against all previously explored nodes. Instead,

this test is broken down into two steps: first find a no-good such that

all its hexahedra are contained in the current partial solution, then

determine if the hexahedra that are in the partial solution but miss-

ing from the no-good could be inserted using flipping operations.

The sequence S constructed in the previous section is very valuable

for this: not only does it save space by factoring out a common

prefix, but it also saves time by allowing this prefix to be processed

only once.

Let H be the current partial solution. The first step is to search

within S for a partial mesh whose hexahedra are a subset of H
(algorithm 3). The process to find such a partial mesh is similar to

the algorithm used to compute the automorphism group initially

(section 3.4.1). The goal is to construct σ , which maps the vertices

of some partial mesh encoded in S to vertices of the current solution

H , such that all hexahedra in the no-good are preserved by the map

σ . The construction of σ again begins from an initial assumption,

namely that the images of all boundary vertices through σ are

known. Because boundary quadrangles must be preserved by σ , the
set of possible initial assumptions is precisely the automorphism

group that was previously computed.

Algorithm 3 is executed once for each element of the automor-

phism group and consists in a traversal of S during which the map

σ is extended. The process ends either upon finding a partial mesh

contained in H or upon reaching a contradiction. For each hexahe-

dron h found in S , we attempt to extend σ such that h maps to some

hexahedron of the current solution H . Each hexahedron created

by a quad flip shares at least one quadrangle with the boundary or

with a previously created hexahedron. Because of this, each hexahe-

dron in S has at least one quadrangle whose symmetric counterpart

is known. It is therefore possible to search for the hexahedron h′

within the current solution H that contains this quadrangle (and

has not already been determined to be the symmetric counterpart

of another hexahedron).

If such a hexahedron h′ exists, it must be the symmetric counter-

part of the hexahedron h encoded in S , and the map σ is extended

accordingly. If h corresponds to a fully explored node (shown in red

in Figure 8), the current partial solution H contains the symmet-

ric counterparts of all hexahedra of the corresponding no-good. If,

however, h corresponds to a partially explored node (shown in blue

in Figure 8), and its symmetric counterpart cannot be found, the

traversal ends early because all subsequent partial meshes encoded

in S contain h, which is not in the current solution. In all other cases,

the traversal of the sequence continues.

Clearly, containing all hexahedra from some no-good is a require-

ment for a node being dominated — all children of the no-good

share this common prefix. There could still be cases where none

of the children of this no-good contain all the hexahedra that are

in the current node. In other words, it may be impossible to find a

sequence of quad flips which inserts the missing hexahedra when

starting from the no-good. Testing for the existence of such a se-

quence may appear intractable at first, because shellability is an

NP-Complete property [Goaoc et al. 2018]. Thankfully, a correct
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test only needs not to produce any false positives, since false posi-

tives are the only reason a part of the search tree would incorrectly

get pruned, causing solutions to be missed. Furthermore, because

shellable meshes tend to accept many different shelling orders, there

is a straightforward algorithm meeting this requirement and which

very often computes the correct result: try a small number of per-

mutations (say 10), then give up if no reverse shelling order was

found (algorithm 4).

ALGORITHM 3: Contains-No-Good: Determine whether or not

a partial mesh contains the symmetric counterpart of a previously

visited node

Input: S : an encoding of the part of the search tree explored so far

(Figure 8); H : a partial mesh; σ : a symmetry of the target

boundary.

Output: true if H contains the symmetric counterparts of all the

hexahedra of a fully explored subtree encoded in S
Seen← ∅;

foreach hexahedron h ∈ S do
Success← true;
q ← a quadrangle of h whose image through σ is known;

q′ ← σ (q);
h′ ← a hexahedron in H containing q′ and not in Seen;

if there is such a hexahedron h′ then
(σ

old
, σ−1

old
) ← (σ , σ−1);

foreach vertex v of the quadrangle of h opposite to q do
v ′ ← the corresponding vertex in h′;
if σ (v) is undefined and σ−1(v ′) is undefined then

σ (v) ← v ′ ; // Extend the map σ
σ−1(v ′) ← v ;

else if σ (v) , v ′ or σ−1(v ′) , v then
Success← false;
break ; // Stop upon contradiction

end
end
if Success then

Seen← Seen ∪ {h′ }
else
(σ , σ−1) ← (σ

old
, σ−1

old
);

end
else

Success← false;
end
if the symbol after h in S is the branching symbol then

/* All subsequent no-goods contain h. The search
is aborted if its symmetric counterpart is
not present. */

if Success is false then return false;
else if Success then

return true ; // No-good is contained in H
end

end
return false;

ALGORITHM 4: Try-Reverse-Shell: Determine whether or not a

sequence of quad flips can create a given set of hexahedra

Input: Q : a quadrangulation of the sphere; H : a set of hexahedra;

M : maximum number of permutations to test.

Output: true if a sequence of quad flips was found.

if H = ∅ then return true;
foreach h ∈ H do

if h can be added by performing a quad flip or Q is a cube then
Q ′ ← the boundary after removing h;
if Try-Reverse-Shell(Q ′, H \ {h },M ) then

return true;
else

Increment the number of tested permutations;

end
end
if M permutations or more have been tested then

return false;
end

end
return false;

4 FINDING LARGER SOLUTIONS USING
PRE-COMPUTED MESHES

The exhaustive search described in the previous section can only

be used with small limits on the maximum number of hexahedra,

because of its exponential execution time. In many cases, finding

a complete shelling by searching exhaustively is too difficult: the

sequence of flips to construct the smallest solution is too long, and

the search tree contains many paths which transform the initial

boundary into one which is more difficult to mesh, instead of being

closer to a solution.

Instead of searching for a sequence of quad flips that transforms

the initial boundary Q into a cube, the key idea for solving larger

cases is to stop the algorithm when a known configuration is found.

For that purpose, we compute all boundaries that can be shelled

with at most n hexahedra (say n ≤ 11). Using a list of all such

boundaries and one of their shellings (subsection 4.1), this variant

of the algorithm can efficiently look up boundaries in the list during

the search. This allows complete solutions to be constructed from

any sequence of flips leading to any of the boundaries in the pre-

computed set.

4.1 Computing small shellable meshes
Consider the flip graph for quadrangulations of the sphere: its nodes

represent quadrangulations of the sphere, and arcs between these

nodes represent a flip between two quadrangulations. A breadth-

first traversal of this graph starting from the cube and stopped at

depth n generates all quadrangulations that can be obtained using a

sequence of up ton flips. To deal with cycles in this graph, previously
visited quadrangulations are stored in a hash table. The hash value

for quadrangulations is constructed from a signature based on the

valence of vertices, and the isomorphism test two quadrangulations

is performed using a variation on algorithm 2 where the two starting

quadrangles are part of different quadrangulations.
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ALGORITHM 5: Generate-Shellings: Generate small shellable

hexahedral meshes

Input: n: maximum size for the generated hexahedral meshes

Output: H: a set of hexahedral shellings with up to n hexahedra in

each mesh.

S ← ∅;
H ← ∅;

Q ← New-Queue();

Enqeue(Q , Cube);

while Q is not empty do
H ← Deqeue(Q );
H ← H ∪ {H };
if |H | = n then continue;
foreach quad flip F do
(B, h) ← Perform-Flip (F , ∂H );
if Is-Compatible(H , h) ∧ B < S then

S ← S ∪ {B };
Enqeue(Q , H ∪ {h });

end
end

end
return H;

The signature used by our algorithm is a histogram of the va-

lences of each vertex, followed by the number of edges connecting

vertices of valence va and valence vb , for any va and vb where this

number is non-zero. While this choice of signature causes collisions,

it can be computed quickly and new entries can be inserted without

necessarily needing a slower computation to find a unique canonical

representation.

Not all quadrangulations generated in this breadth first search

admit a shelling with up to n hexahedra: interpreting the flips per-

formed during the traversal of the graph as the insertion of hex-

ahedra, these hexahedra may not all be compatible. By explicitly

testing for compatibility while performing the breadth first search

(algorithm 5), we obtain a greedy construction similar to the pro-

cedure outlined by Xiang and Liu [2018]: the hexahedra that are

found are those which admit a shelling such that any prefix is the

smallest shellable hexahedral mesh for the corresponding bound-

ary. For large values of n, it is not clear that such a shelling should

always exist, but we can verify this property for small values of n.
For every quadrangulation found during the breadth-first search

but without a hexahedral mesh found by algorithm 5, algorithm 1

is used to verify that there is indeed no shellable hexahedral mesh

with at most n hexahedra. This test was performed for n ≤ 10, and

no counter-examples were found.

From algorithm 5, a table of 69, 043, 690 boundaries that can be

meshed with up to 11 hexahedra is constructed (Table 1).

4.2 Using the pre-computed table
If at any point during the search, the boundary of the unmeshed

region matches one of the pre-computed quadrangulations, the

shelling of that quadrangulation is used to finish the meshing of

that region.

Table 1. Number of combinatorial quadrangulated boundaries that can be
shelled with up to Hmax hexahedra. Timings are given for a single thread
on an Intel® Core™ i7-7700HQ CPU.

Hmax # quad meshes timing

1 1 < 0.1s

2 2 < 0.1s

3 5 < 0.1s

4 17 < 0.1s

5 74 < 0.1s

6 489 < 0.1s

7 4,192 0.12s

8 42,676 1.78s

9 476,520 34.418s

10 5,632,488 14min 55s

11 69,043,690 6h 41min

The idea is to use the shelling computed in the previous section

to fill the unmeshed region. Simply combining the two solutions

is not always possible: this may produce an invalid mesh where,

for example, two hexahedra share multiple quadrangles (Figure 9).

algorithm 1 could be used to compute all shellings of the unmeshed

region with up to n hexahedra. If this search finds a shelling com-

patible with the partial solution constructed so far, a solution can

be generated, at the cost of an additional computation.

Even if no such shelling was found, a solution can be constructed

from any shelling of the unmeshed region, without performing

an additional search or storing multiple hexahedrizations for each

boundary: first construct a copy of the boundary of the unmeshed

region, then, for each quadrangle of this boundary, create a hexa-

hedron to connect each quadrangle to its copy. The hexahedra that

have been inserted in this manner are guaranteed to be compati-

ble with any hexahedrization of the unmeshed region, allowing a

complete mesh to be constructed. When this approach is used, the

first solution found by the algorithm is not in general the smallest.

However, when the smallest solution contains a large number of

hexahedra, this approach can construct solutions in many cases

where methods with stronger guarantees fail to find any, because it

adds several hexahedra without branching.

Efficient access to the pre-computed table is performed using

a binary search. We create an array of all the quadrangulations

we found, sorted by their signatures. To find the hexahedral mesh

corresponding to a given quadrangulation, its signature is computed

and an isomorphism test is performed on all quadrangulations in

the table that have the same signature.

5 RESULTS
A constructive solution for constrained hex-meshing. Only one

previous solution to the constrained hexahedral meshing problem

gives a completely explicit construction [Carbonera and Shepherd

2010]. This method requires 5396 n hexahedra to construct a valid

mesh bounded by n quadrangles. In the following, we prove that

this bound can be lowered to 78 n using the construction proposed

by Erickson [2014].
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Fig. 9. Principle of the insertion of a buffer layer to guarantee final mesh
validity when using precomputed cavity meshes. (left) Simply adding two
quadrangles (red) inside a cavity creates an invalid mesh where pairs of
quads share more than one facet; (right) inserting a layer of buffer quads
(light gray) allows the use of the same (combinatorial) quads to fill the
cavity and produce a valid mesh.

Using our search algorithm (section 4), we found hexahedral

meshes for both types of buffer cells that Erickson’s construction

needs, along with geometric realizations using linear hexahedra (Fig-

ure 10) obtained by applying existing mesh untangling techniques

[Livesu et al. 2015; Toulorge et al. 2013], although the solutions have

a very low minimum scaled Jacobian (Table 2). The meshes that we

found contain 37 and 40 hexahedra. Because gluing multiple buffer

cells together as needed by the construction would create a degen-

erate mesh, a hexahedron is added on each boundary quadrangle.

The resulting meshes of the buffer cells have 57 and 62 hexahedra

respectively, giving the following result:

Theorem 5.1. Let Ω be a compact and connected subset of R3

bounded by a 2-manifold ∂Ω. Given a quadrangulation Q of ∂Ω,
each component of Q containing an even number of quadrangles,

and a triangulation T of Ω (splitting each quadrangle of Q into two

triangles), if there is a combinatorial hexahedral mesh of Ω bounded

by Q , then there is one with no more than 62|Q | + 8|T | hexahedra. In
particular, if Ω is a ball (hence ∂Ω is a sphere) and |Q | is even, there
is a combinatorial hexahedral mesh bounded by Q with no more than

78|Q | hexahedra.

Proof. Follow the construction of Erickson [2014] using the tem-

plates that we computed. There is one buffer cell for each boundary

quadrangle, and each tetrahedron of the triangulation T is split

into 4, 7, or 8 hexahedra. In the worst case, each buffer cell will be

meshed with 62 hexahedra, and each tetrahedron will be split into

8 hexahedra.

IfΩ is a ball, there is always a triangulationT with 2|Q | tetrahedra,
obtained by arbitrarily splitting each quadrangle into two triangles,

adding a vertex inside the domain, and joining each triangle to this

new vertex by a tetrahedron. The bound for this special case is

therefore 62|Q | + 8 × 2|Q | = 78|Q |. □

A similar bound can be obtained for quadrangulations with an

odd-number of quadrangles in some of their components. In that

case, hexahedra are added to connect pairs of odd components, and

5.1 is used to compute the number of hexahedra to mesh the rest of

the domain.

Hexahedrizations for small quadrangulations of the sphere. We

used the algorithm described in section 4 to compute hexahedriza-

tions for all even quadrangulations of the sphere containing up

to 20 quadrangles (Table 3). The 54, 943 input quadrangulations

were generated using plantri [Brinkmann et al. 2005]. We pre-

computed shellable hexahedral meshes with up to 11 hexahedra.

Of the 69, 043, 690 boundaries that were pre-computed, only 130

are included in the list of inputs. Nonetheless, in about 20% of all

instances, the search for a solution terminates almost immediately

after loading the set of pre-computed solutions (Figure 11). Only a

few additional seconds are enough to find hexahedrizations bounded

by most quadrangulations of the sphere. There are however some

more difficult cases, requiring over an hour of computation time

(Figure 13). The trapezohedron bounded by n faces, obtained by

generalizing the tetragonal trapezohedron of Figure 2, is usually

among the most difficult cases of a given size, requiring meshes

with an intricate internal structure in order to be filled. For example,

the smallest solution found for the 20-face decagonal trapezohedron

contained 72 hexahedra, strictly more than any of the other bound-

aries (Figure 12). Similarly, the 16-face octagonal trapezohedron

required 67 hexahedra, with the decagonal trapezohedron being

the only boundary for which all solutions found were larger. The

trapezohedra are also among the boundaries that require the most

time before any solution could be found. The 14-face heptagonal

trapezohedron is the second most time consuming input, requiring

2h 50min, and the 20-face decagonal trapezohedron is the third,

requiring 2h 43min. In the worst case, shown on Figure 13, it took

6h 15min before a 58-element mesh was found.

The quadrangulations of Figure 2 are not particularly difficult

to mesh using our method. Indeed, most quadrangulations of up

to 18 quadrangles require more computation time than those two

cases — and even finding the smallest known solutions is orders of

magnitude easier than finding any solutions for the cases shown

on Figure 13. On a 4-core Intel® Core™ i7-7700HQ CPU, after pre-

computing a list of shellable meshes with up to 10 hexahedra, the

36-element mesh of Schneiders’ pyramid originally found by Xiang

and Liu [2018] is found within 3 seconds of search. A 44-element

mesh of the tetragonal trapezohedron is found within 4 seconds

and it takes 31 seconds to find the smallest known 40-element mesh

constructed in [Verhetsel et al. 2018]. Statistics for the geometric

realizations found for both meshes are shown on Table 2.

6 CONCLUSIONS
While existence proofs for solutions to the constrained hexahedral

meshing problem have long existed, previously known methods to

construct hexahedral meshes have required very large meshes even

for small quadrangulations; this paper shows that a much lower

theoretical bound exists, and provides tools to search for much

smaller hexahedral meshes.

Cases previously thought of as difficult and which motivated

research about this question are solved in a matter of seconds using

our techniques. This research, by allowing hexahedral meshes to

be computed for any small quadrangulation of the sphere, opens

up a wide array of new possibilities. It is an important step for hex-

dominant meshing [Yamakawa and Shimada 2003], as this solves
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Fig. 10. Hexahedrizations of the two types of buffer cubes used to mesh arbitrary domains in the algorithm of Erickson [2014]. (top) 37 hexahedra to mesh the
20-quadrangle cell; (bottom) 40 hexahedra to mesh the 22-quadrangle cell. Colors correspond to the different sides of the original cubes (shown on the left).

Table 2. Statistics for the geometric meshes computed for the test cases of Figures 2 and 4

Template |Q | |V
bnd
| |H | |V

total
|

# edges per valence Scaled Jacobian

3 4 5 min max median

Tetragonal trapezohedron 8 10 40 52 40 75 4 0.35 0.42 0.38

Schneiders’ pyramid 16 18 36 51 32 62 4 0.12 0.49 0.26

Erickson’s buffer cell (1) 20 22 37 53 43 49 4 0.31 0.63 0.42

Erickson’s buffer cell (2) 22 24 40 55 44 48 9 0.031 0.45 0.41
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Fig. 11. Time to compute hexahedrizations for all quadrangulations of the
sphere with up to 20 quadrangles. Run on a machine with two AMD EPYC
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Fig. 13. The four most time-consuming quadrangulated spheres to mesh
using our method. Each required over an hour of computation time on 64
cores.

Table 3. Statistics for the combinatorial meshes computed for all even
quadrangulations of the sphere with up to 20 quadrangles.

Q
|H | |V

total
| %edges by valence

min max med min max med 3 4 5 6

6 1 8 (none)

8 44 56 48 34 16 2

10 2 58 36 12 64 48 39 45 15 1

12 3 47 43 14 57 52 38 50 11 1

14 3 59 44 16 73 55 38 48 12 1

16 4 67 45 18 77 56 37 51 11 1

18 4 67 46 20 79 58 38 49 12 1

20 5 72 47 22 81 59 38 49 12 1

the combinatorial aspect of the problem of filling the cavities that

those methods leave. This method also offers new insights into the

structure of block decompositions for configurations for which state-

of-the-art techniques such as [Liu et al. 2018] fail to generate a valid

block structure, by allowing combinatorial meshes to be computed

in some of those cases.
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