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Abstract

In this research note, we propose a new scalable parallelization scheme to generate the Delaunay tetrahedrization of a given set of
points. Our first contribution is a very efficient serial implementation. From this base we developed a multi-threaded version of
the Delaunay kernel that concurrently insert points into the tetrahedrization. We use the Hilbert curve coordinates to distribute the
work between threads. Our strategy is free from heavy synchronization overhead. The key idea to manage conflicts is to modify the
partitions by enlarging the space filled by the Hilbert curve. Our implementation is very simple and outperforms previous existing
methods.
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1. Introduction

As the size of finite element meshes grows, efficient scalable parallel meshing algorithms taking advantage of
the capabilities of recent architectures are needed. Indeed, today’s meshing algorithms are not well-adapted to new
multicore architectures with a large common shared memory but relatively low performance individual computing
cores. In this research note, we propose a new parallelization scheme for the Delaunay kernel that is scalable and
generates one billion of tetrahedra in 82 seconds on a 64 core Intel® Xeon Phi™7210 @ 1.30GHz. Most of the
recently proposed parallel Delaunay methods manage conflicts between threads with some locking strategy [1-5].
Remacle[6] proposed a simpler two-level parallelization of the Delaunay strategy that only uses OpenMP barriers.
However, synchronization overheads prevent the good scalability of these approaches.

We first propose a very efficient serial implementation of the Delaunay tetrahedrization (§2). From this base we
build a scalable multi-threaded parallelization of the Delaunay kernel (§4). Our strategy to decompose the domain is
based on very fast initial sorting of the points to triangulate (§3). To detect thread conflicts we use a simple coloring
scheme of the points, and avoid complicated locking strategies, or synchronization barriers. To manage points at the
interface of several threads, our idea is to modify the point thread partitioning, displacing the problematic areas to
already processed zones. Timings show that our serial implementation is more than 2 times faster than Tetgen[7], that
our parallel algorithm is scalable and performs very well on highly different machines: (i) a laptop with a 4 core Intel®
Core™i7-6700HQ @ 2.60GHz processor with 16GB of memory and (ii) an Intel Knights Landing® machine with a
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i7-6700HQ Xeon Phi
#vertices  TetGen Ours TetGen Ours

10K 0.060  0.031 0.35 0.20

100K 0.60 0.23 3.77 1.03 i7-6700HQ Xeon Phi
IM 6.34 2.09 39.14 8.73 #vertices  gsort radix  qsort radix
10M 67.92 20.79 419.77 85.11
OilPump 10K 0.0024 0.0018 0.020 0.0034
536,538 380 1.42 20.16 6.03 100K 0.022 0.0039 0.24 0.0058
Neptune IM  0.28 0.024 1.43 0.0079
205,835 1.48 0.35 773 242 10M  3.16 0.23 15.04  0.027
Table 1: Timings in seconds of our serial 3D Delaunay tetrahedrization Table 2: Comparison of our radix sort implementation with the gsort
and comparison with Tetgen [7]. The first four input point sets are ran- function of the C standard library. The randomly generated input ver-
domly generated points in a unit cube. OilPump and Neptune models tices (32 bytes structures) are sorted according to their Hilbert coordi-
are from the aim @shape repository. nates (4 bytes keys). All timings are in seconds.

64 core Intel® Xeon Phi™7210 @ 1.30GHz and 192GB of memory. The code for the serial Delaunay tetrahedrization
has about one thousand lines (not including geometric predicates [8]) and the parallelization adds up three hundreds
lines. Our C implementation is open-source and will be available in Gmsh (www.gmsh. info).

2. Serial Delaunay Tetrahedrization

Given a set S of n points in R?, its Delaunay triangulation (tetrahedrization) is defined as the tetrahedrization
such that the circumsphere of each tetrahedra does not contain any point of S. In 3D, the fastest algorithms to build
the Delaunay triangulation of § are based on the incremental insertion of the points. When inserting a point in the
tetrahedrization, (i) all the tetrahedra whose circumsphere contains the point in its interior are determined and deleted
creating a cavity, (ii) this star-shaped cavity is triangulated taking into account the new point. The last step is to
compute the adjacencies between the new tetrahedra.

Our serial implementation is based on state of the art schemes that have been proven to be the most efficient.
The overall algorithm is similar to the one of Tetgen [7], however our implementation is significantly faster than
Tetgen (Table 1). The first reason is that we optimized key steps of the Delaunay kernel. For example, it is possible
to accelerate the test checking if the circumsphere of a tetrahedron contains a point or not, the insphere test, by
pre-computing sub-determinants for each tetrahedra. Another important tuning is a very fast computation of the
adjacencies between the new tetrahedra filling a cavity by vectorizing part of the operations. The second reason is that
our implementation is more specialized and much shorter than Tetgen’s. Our code of about 1,000 lines of C generates
only 3D Delaunay triangulations, this is to compare to the 35,000 lines of Tetgen and the management of constrained
(non-Delaunay) triangulations.

3. Fast Spatial Sorting

The speed of the incremental Delaunay algorithm we are using depends on the insertion order of the points. Com-
bining a Biased Randomized Insertion Order method (BRIO) [9] with a sorting of the points along a space filling
Hilbert curve is the most efficient scheme for Delaunay tetrahedrization. Two consecutive vertices on the Hilbert
curve will usually be close to each other (see Fig. 1a and Fig. 2a). The Hilbert coordinate of a point is a unsigned
integer which number of bits is 3 times the number of iterations of the Hilbert curve. Hilbert coordinates of all vertices
can be computed using multiple threads and vectorization.

To sort the points according to their Hilbert coordinate, we developed a new parallel implementation of radix sort.
Radix sorting is a non-comparative sorting algorithm that runs in O(n) time. Its principle is to group integer keys by
individual digits that have the same significant position and value, see e.g. [10]. Our parallel implementation uses
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Fig. 1: Three iteration of the construction of the Hilbert (a) and Moore (b) curves.

some vectorization and is optimized to use the number of bits corresponding to the desired precision, i.e. the number
of iterations on the Hilbert curve. We use a quite large radix (up to 2048) leading to major improvements of the
performances (Table 2). Ten million points are sorted in 0.23 seconds on a standard laptop and one billion points in 5
seconds on a Xeon-Phi machine. This is much more efficient than the C/C++ standard library sorting functions like
std::sort and qsort, see the comparisons in Table 2.

4. Parallelisation of the Delaunay Tetrahedrization
4.1. Strategy

To parallelize the Delaunay triangulation kernel, we allow concurrent insertions of points into the same triangula-
tion. A starting triangulation is built by sequentially inserting the first few thousands points. The other points are then
inserted in rounds of increasing size, each round being six times larger than the previous one. The m vertices of each
round are sorted by their Hilbert coordinates (§3). The work between the # threads is then split by assigning the first
m/n points to the first thread, the following m/n points to the second thread, etc. This subdivision of the Hilbert curve
is also used to color already inserted vertices. Afterwards, a point can be inserted only if the vertices of its cavity have
the same color, i.e. if they have their Hilbert coordinates in the same range. This is sufficient to avoid all possible data
race issues. The number of points that can be inserted without any conflict depends highly on the size of the current
tetrahedrization. Typically, when dealing with millions of points, success rate reaches 85% at the last insertion round.

4.2. Inserting conflicting vertices

The first method one can think of to insert the remaining vertices is to insert them sequentially. This is however
prohibitively expensive, and we explored several other approaches.

Reduction. Using a reduction by recursively merging pairs of thread partitions to completely eliminate boundaries is
a slightly better idea. However the fraction of solved conflicts will be very low and this strategy is not scalable on
more than a dozen of threads. Take for example a domain subdivided into many cubes (one cube for one thread). Each
of them has 6 boundaries on which conflicting vertices lie. At the first merge, one boundary is removed, so that é of

the remaining vertices are inserted. At the second merge, only % of the remaining % vertices are inserted.

Hilbert Curve Shifting. A second idea to obtain different partitions is to shift the Hilbert curve, then coordinates are
shifted and partitions are modified. The issue is that shifting does not significantly modify the partition boundaries.
Indeed the Hilbert curves are inherently separated in each dimension at the center of the bounding box (Fig. 1a).

Bounding Box Expansion. Another, more indirect, strategy to change the Hilbert coordinates is to modify the bound-
ing box that the Hilbert curve fills (Fig. 2b). All Hilbert coordinates are computed anew for all the tetrahedrization
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Fig. 2: To partition in two different ways a set of points, boxes of two sizes are used to compute the Hilbert curve. (a) the fitted bounding box (b) the
enlarged bounding box. Partitioning both curves to dispatch the work between 4 threads gives different partitions (c) and (d) such that conflicting
points in one of them will not be for the other.

vertices and all points to insert. The points to insert are then sorted according to these new coordinates and the par-
titions are modified. To minimize common boundaries with the first partitioning, we also apply a shift to the curve
(Fig. 2). This allows to insert an important part of the vertices that were in conflict.

Implementation. Our implementation is adaptive. Depending on the success rate « (percentage of conflicting points
inserted) and the number of threads n, we use a sequential insertion when a < ﬁ, a reduction scheme when i <a<i,
and a bounding box expansion by default. Note that in our implementation we used a modified Hilbert curve, the
Moore curve, that loops (Fig 1b).

4.3. Performances of the Parallel Tetrahedrization

We tested our parallel algorithm for various number of vertices on two highly different machines: a laptop with
a 4 core Intel® Core™i7-6700HQ @ 2.60GHz' processor with 16GB of memory and an Intel Knights Landing®
machine with a 64 core Intel® Xeon Phi™7210 @ 1.30GHz with 192GB of memory.

Although there are some vectorized parts in our implementation, the core of the Delaunay algorithm is still not
suited for architectures heavily relying on SIMD instructions. However, our implementation is still very competitive
on the Xeon Phi, a machine that usually require full vectorization of the program in order to overcome its slow cores
(Fig. 3). We expect our implementation to reach the billion tetrahedra per second on a faster machine. Our tests on
both machines show the very good scaling of our parallel algorithm as long as the number of threads is inferior to the
number of cores (Fig. 4). Indeed, our implementation does not benefit from hyper-threading on the Xeon Phi.

5. Conclusion
We proposed an efficient serial 3D Delaunay triangulation. We also implemented a very effective spatial sorting

algorithm that combines a fast way to compute Hilbert coordinates with a state of the art radix sort. Then, we designed
a scalable parallel algorithm that partitions the domain taking advantage of our fast spatial sorting.

! 3.50Ghz in Turbo Boost
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Fig. 3: Performances of our 3D parallel Delaunay kernel for points uniformly distributed in a unit cube

T T T T T T T
N i7-6700HQ

~ Xeon Phi 7210
100 = - - - perfect scaling | |

T

Time [s]

I ~ | I I ]
16 32 64 128 256
Number of threads

Fig. 4: Scaling of our 3D parallel Delaunay kernel for 15 million vertices (about 100 million tetrahedra).
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