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Abstract Indirect methods recombine the elements of
triangular meshes to produce quadrilaterals. The resulting

quadrilaterals are usually randomly oriented, which is not

desirable. However, by aligning the vertices of the initial
triangular mesh, precisely oriented quads can be produced.

Levy’s algorithm is a non-linear optimization procedure

that can align points according to a locally defined orien-
tation matrix. It minimizes an energy functional based on

the Lp distance. The triangulation of a set of vertices

smoothed with Levy’s algorithm is mainly composed of
right-angled triangles, which is ideal for quad recombina-

tion. An implementation of Levy’s algorithm based on

numerical integration is presented. The implementation has
the advantage of not modifying the edge meshes. It also

features automatic calculation of the orientation angle.

When used in combination with an indirect recombination
algorithm, it can create quads of varying size and orien-

tation. It has been tested on two-dimensional surfaces as

well as globally parametrized three-dimensional surfaces.
The results demonstrate an increase in the number of nodes

having four neighbors and an improvement of the quads
quality. The development took place in the framework of

the Gmsh free software.
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1 Introduction

For finite element analysis, quad meshes can be advanta-

geous compared to triangular meshes. For example, in
computational fluid mechanics, they accelerate grid con-

vergence [15, 23, 24] and they capture boundary layers

with a higher precision [5]. They are also very useful in
structural mechanics. They are not subject to numerical

locking [18] and they allow schemes to remain stable under

inexact integration [7, 27, 28]. In the context of high order
methods, quad meshes can be curved more robustly [19].

However, quad mesh generation techniques are not as

mature as triangular ones. The indirect approach looks like
a promising solution. It consists of combining two by two

the elements of a triangular mesh in order to create quads.

Triangular mesh generators are usually designed to pro-
duce near-equilateral triangles. Combining these triangles

yields randomly oriented quads, which is not ideal. Nev-

ertheless, if the vertices of the initial triangular mesh are
well aligned, an indirect algorithm like Blossom-Quad [17]

can create high quality, precisely oriented quads. Unlike
triangles, quads are always oriented. It is usually desirable

to prescribe this orientation.

Lloyd’s algorithm is a well-known procedure used to
create uniform distributions of points. It iteratively moves

each point to the centroid of its Voronoi cell [4]. The

shapes of the Voronoi cells become as close as possible to
circles. It can be shown that Lloyd’s algorithm minimizes

an energy functional equal to the sum of the moments of

inertia of the Voronoi cells [11]. Some authors have used
the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) optimization procedure in order to minimize the

energy functional [11]. LBFGS has the advantage of con-
verging faster than the traditional fixed-point iteration

process [11].
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Levy’s algorithm also minimizes the sum of the

moments of inertia of the Voronoi cells [10]. However, the

moments of inertia are now evaluated with the Lp distance
instead of the classical Euclidean one. The Voronoi cells

become rectangular, which has the effect of aligning the

points in a rectangular manner.
Various Lp distances are illustrated on Fig. 1. They can

be defined as [10]:

jjy" xjjpp ¼ jy1 " x1jp þ jy2 " x2jp ð1Þ
The Lp distances are only used for the energy functional.

The Voronoi cells are still constructed with the habitual
Euclidean distance.

Each curve on Fig. 1 contains a set of points equidistant to

the origin according to its particular Lp distance. The curves
become more and more rectangular as p increases. For any

p different than two, the Lp distance becomes anisotropic.

Levy’s algorithm also uses the LBFGS procedure in
order to minimize the energy functional. LBFGS only

requires the value of the functional and its gradient.

However, the second derivative of the functional needs to
be continuous. It has already been proven that the L2
energy functional is C2 continuous at certain conditions

[11]. Nevertheless, there is currently no proofs available
for the general Lp case.

The process is illustrated on Figs. 2 and 3. Figure 2a is

the initial triangular mesh and Fig. 2b is the Voronoi dia-
gram of the vertices. Figure 3a is the final quad mesh

obtained with Levy’s and Blossom-Quad algorithms.

Figure 3b is the corresponding Voronoi diagram.
A two-dimensional implementation of Levy’s algorithm

adapted to the field of finite element computation is presented

in this paper. The implementation does not modify the one

dimensional meshes discretizing the model edges. It can take
into input angle and mesh size fields. These fields define the

orientation and the size of the quads. The angle field is cal-

culated in a completely automatic manner. The algorithm can
be applied to any curved surface having a conformal

parametrization. When no conformal parametrization exists,
it is possible to build one using global parametrization tech-

niques [14]. The energy and the gradient are computed with

well-known Gauss integration techniques. The Alglib library
[2] is employed for the LBFGS optimization part.

This article is divided as follows. Section 2 briefly dis-

cusses some methods that can align points in a rectangular
manner. Section 3 details Levy’s algorithm. Section 4

describes the algorithm used to compute the orientation

angle. Section 5 presents several examples of quad meshes
on three-dimensional surfaces.

2 Previous work

This section begins by presenting three methods that can
align points in a rectangular manner. In order to create

quad meshes, a recombination module needs to be

supplemented.

Fig. 1 Unit circles in various Lp distances

(a) (b)

Fig. 2 The initial triangular mesh (a) and its corresponding Voronoi
diagram (b)

(a) (b)

Fig. 3 The final quad mesh (a) and its corresponding Voronoi
diagram (b) (a Laplacian smoothing has been applied after the
triangles recombination)
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A two-dimensional square packing heuristic is described

in [20] and a three-dimensional one in [25]. These algo-
rithms are inspired from the field of newtonian molecular

dynamics. Each particle has a potential, which give rise to

an attraction-repulsion force. The resulting equation of
motion is solved using a Runge–Kutta scheme. The number

of points is variable. It can either increase or decrease

depending on the population density. In two dimensions, a
one step refinement is used in order to create all quad

meshes.
Another two-dimensional method based on potential

fields is detailed in [22]. The distances are computed with

the L1 norm instead of the usual Euclidean norm. Addi-
tional torsion spring-like forces are also used. The number

of points is adjusted by splitting or collapsing edges.

Special precautions are taken in order to avoid splitting an
edge that was just collapsed or vice-versa. This method is

able to produce quad meshes of high quality and high

anisotropy on plane surfaces.
A two-dimensional procedure based on forces between

neighboring vertices is described in [9]. Three different

forces are used: two for alignment and one for uniform
distribution. In order to fasten convergence, certain edges

are aggregated together when they are sufficiently well

aligned. Some quads are also split in order to reduce the
number of T-vertices, i.e. vertices that have three neigh-

bors. By using a local parametrization, this method is able

to create high quality quad meshes on three-dimensional
surfaces. However, it also produces a limited number of

polygons with more than four faces.

The two following approaches to align points come from
the field of digital art. They were initially developed for

mosaic tilings but could be useful for quad mesh

generation.
The Hausner method [6] is based on the classical

Lloyd’s algorithm, which iteratively moves vertices to the

centroid of their Voronoi cells. However, this time the
Voronoi diagrams are computed with the L1 norm instead

of the Euclidean norm. The method is therefore able to

align points in precise directions instead of simply dis-
tributing them uniformly. The Voronoi diagrams have also

the particularity of being discrete and not continuous. They

are created by projecting pyramids on the graphic card
Z-buffer. The overall procedure is very simple, which is a

great advantage. Unfortunately, it may not be practical for

meshes with large variation in element size because of the
limited number of pixels.

In [8], the authors define an energy based on the L1
distance. The energy is then approximated as a spring
potential and an equation of motion is derived. A local

parametrization allows the treatment of three-dimensional

surfaces. In order to improve the final solution, certain tiles

from high-density areas are moved to low-density areas.

Well-aligned tilings of several thousand elements can be
generated on curved surfaces.

So far, parametrization methods have not been discussed

in this section. These methods differ completely from the
precedent ones and do not rely on moving mesh vertices.

For example, the procedure discussed in [21] subdivides a

three-dimensional surface into a limited number of simple
domains by using its cross-field information. These

domains are then parametrized as rectangles and a full quad
mesh of very high quality is generated. In [12], Lagrangian

optimization is used to compute a smooth cross field.

A parametrization that respects the cross field is later
obtained with a mixed integer solver. Again, the quality of

the final mesh is very high, even for complex surfaces.

The last method to be presented in this section comes
from the field of image processing [13]. It aims at con-

verting an image into a segmented mesh. The quads are

created by combining triangles in no particular order.
Convexity is the only requirement. The quads and the

remaining triangles are then split in order to generate a full

quad mesh. An original smoothing scheme based on Bézier
control points is also used.

3 Levy’s algorithm

The Voronoi cells of the mesh vertices that belong to the
convex hull extend to infinity. The clipped Voronoi dia-

gram is the part of the Voronoi diagram that is inside the

domain, as shown in Figs. 2b and 3b. It is indispensable in
order to compute accurate values for the energy and the

gradient. The method used in this paper to generate clipped

Voronoi diagrams is inspired from [26] and is explained in
Sect. 3.1. Section 3.2 shows how to compute the energy

and its gradient. Section 3.3 discusses the various diffi-

culties related to the optimization step.

3.1 Clipped Voronoi diagrams

Figure 4 shows an example of a clipped Voronoi diagram.

Both boundary and interior vertices have Voronoi cells.

Most of the time, it is only the Voronoi cells generated by
boundary vertices that intersect the boundary. However, if

an interior vertex is too close to a boundary, its Voronoi

cell might intersect it, as shown in Fig. 5. This is unlikely,
but the implementation should take this phenomenon into

account.

Section 3.1.1 gives some results about the convexity of
the clipping polygons. Section 3.1.2 presents a method that

can identify all Voronoi cells that intersect the boundary.

Section 3.1.3 explains the global clipping algorithm.
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3.1.1 Convexity of the clipping polygons

The Sutherland–Hodgman algorithm is a simple algorithm

that can clip both concave and convex polygons against
convex clipping polygons [1], as seen on Fig. 6. It could

prove itself useful for clipping the Voronoi cells with the

boundaries [26]. However, before applying the algorithm,
it is necessary to determine if the clipping polygons made

of boundary line segments are locally convex.

The Voronoi cell of an interior mesh vertex can some-
times intersect the boundary, as shown on Fig. 7. The

Voronoi cell on the figure is clipped by a single line seg-

ment, which can be considered an half-plane. An half-plane
is evidently a convex polygon. It is the only possible sce-

nario. It is true that a concave clipping polygon could be

built by putting a boundary mesh vertex inside the Voronoi
cell. Nevertheless, it would mean that there are more than

one vertex inside a single Voronoi cell, which is impossible

by definition. The Sutherland–Hodgman algorithm can
therefore be applied to interior Voronoi cells.

The Voronoi cell of a boundary mesh vertex always

intersects the two boundary line segments at its left and at
its right, as seen on Figs. 4 and 5. These particular inter-

sections cannot be treated by the Sutherland–Hodgman

algorithm. However, they can be computed by cycling

through the Delaunay elements incident to the boundary

vertex, as shown on Fig. 8.
A boundary Voronoi cell can also intersect supplemen-

tary line segments, such as segment #2 of Fig. 9. Line

segment #2 is equivalent to a convex polygon. The Suth-
erland–Hodgman algorithm can be applied here as well.

3.1.2 Research by propagation

The Voronoi cells of interior vertices can sometimes
intersect the boundary. Nevertheless, checking all interior

Voronoi cells for intersection with all boundary line seg-

ments would take too long. Fortunately, Yan and al. dis-
covered an efficient way to perform this task [26].

As seen on Fig. 10, the facet f of the Voronoi cell of

mesh vertex x1 intersects the boundary line segment l. By
definition, f is the orthogonal bisector of the Delaunay edge

joining x1 and x2; x2 being another mesh vertex. f is also a

facet of x2’s Voronoi cell. Therefore, x2’s Voronoi cell will
intersect l. By starting from the Voronoi cells of the

boundary mesh vertices, it is possible to identify all interior

Voronoi cells that intersect the boundary while only veri-
fying a small amount of them.

3.1.3 Voronoi diagram clipping algorithm

The four steps of the complete clipping algorithm can now

be described. These steps are inspired from [26]. Two data
structures will be used: a queue and an array of lists. The

queue will contain the mesh vertices to be treated. The

array will contain for each mesh vertex the list of boundary
line segments that intersect its Voronoi cell.

1. The first step consists of creating the interior Voronoi
cells, as shown in Fig. 11a. Each Voronoi cell is a

polygon composed of Voronoi vertices. The Voronoi

vertices are the center of the circles circumscribing the
Delaunay triangles. Some interior Voronoi cells might

intersect the boundary, but this will be addressed later

in steps 3 and 4.
2. There is a boundary line segment at the left and at the

right of each boundary mesh vertex. The second step

consists of clipping the boundary Voronoi cells with
these line segments, as shown in Fig. 11b. For each

intersection, the procedure described in Sect. 3.1.2 is

used in order to determine if there is a neighboring
interior Voronoi cell that intersect the same boundary

line segment. If it is the case, then the interior mesh

vertex in question is pushed in the queue and the
boundary line segment is added to its list.

3. The third step consists of identifying all the boundary

line segments that intersect each Voronoi cell with the
procedure described in Sect. 3.1.2. Both the queue and

Fig. 4 A clipped Voronoi diagram

Fig. 5 The arrow shows an interior Voronoi cell that intersects the
boundary
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the array of lists are used for this step. The mesh
vertices are popped one after the other until the queue

is empty. Every time that a mesh vertex is popped,

each facet of its Voronoi cell is tested for intersection
with each boundary line segment in its list. If there is

an intersection, then the other mesh vertex that share

the same facet is pushed in the queue, but only if its list
did not originally contained the boundary line seg-

ment. This precaution is taken in order to ensure that

the algorithm does not continue indefinitely.
4. The list of boundary line segments that intersect each

Voronoi cell is now known. The last step consists of

using the Sutherland–Hodgman algorithm to clip the
Voronoi cells with the boundary line segments. Figure

11c shows the final clipped Voronoi diagram.

Fig. 6 A six steps
demonstration of the
Sutherland–Hodgman algorithm

Fig. 7 Interior Voronoi cell intersected by a line segment (through-
out this article, the black dots are assumed to be mesh vertices and the
hollow dots are assumed to be Voronoi vertices)

Fig. 8 S1, S2 and S3 are the
bisectors of the Delaunay edges
AB, AC and AD
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3.2 Energy and gradient evaluation

Sections 3.2.1 and 3.2.2 introduce the energy functional

and the gradient. Section 3.2.3 shows how the domain is
divided into triangular elements. Section 3.2.4 explains

how to compute the energy and the gradient with Gauss

integration techniques.
The implementation described in this article can only

find local energy minimums. In general, it cannot find

global minimums even for simple geometries such as
squares and rectangles. It can nevertheless align points in a

very satisfactory manner.

For example, in the case of a 11 by 11 square mesh
containing 81 interior vertices, the global minimum is

readily identifiable. It is a perfect mesh containing only

square triangles. Figure 12 illustrates four different initial
triangular meshes and their corresponding optimized meshes

after 100 iterations. As expected, the global minimum can be

found for mesh A. Even though meshes B and C look

similar, only mesh B can be optimized to the perfect solu-

tion. This simple example shows that the resulting mesh
depends on the initial configuration. However, the alignment

can be improved even in the case of low quality initial

meshes.
The variable s is used to measure how close to perfect

square triangles the elements are:

s ¼ 1

N

XN

i¼1

max
j¼1;2;3

ðabsðsin hijÞÞ ð2Þ

N is the total number of triangular elements in the mesh.
hi1 is the first interior angle of triangular element i, hi2 is

the second one and hi3 is the third one. s is equal to 1 for a

mesh containing only perfect square triangles. It is equal to
0.866 for a mesh containing only equilateral triangles.

3.2.1 Energy functional

Before defining the energy functional, it is necessary to
introduce two parameters: M and q.

M specifies the orientation of the quads. It is a function

of the orientation angle h. The orientation angle h is the
angle between the local coordinate system S0 and the mesh

coordinate system S. The quads will be locally aligned with

the axes of S0; as shown on Fig. 13.
M is the change of basis matrix that goes from S to S0:

MðhÞ ¼ cosðhÞ sinðhÞ
" sinðhÞ cosðhÞ

! "

Section 4 describes how to obtain h in a completely

automatic manner for general domains.
The parameter q is the density. It specifies the size of the

quads. The following formula illustrates the relationship

between the density q and the mesh size h. It can be
obtained with Du procedure [3].

q' 1

hpþ2
ð3Þ

The energy functional can now be defined [10] as

Fðx1; x2; . . .; xNÞ ¼
XN

i¼1

Z

Ri

qðyÞjjMðy" xiÞjjppdy
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IRi ðxiÞ

ð4Þ

Fig. 9 Boundary Voronoi cell intersected by a line segment

Fig. 10 Three interior Voronoi cells intersecting the boundary

(a) (b) (c)

Fig. 11 a The unclipped Voronoi cells of the interior mesh vertices, b The clipped Voronoi cells of the boundary mesh vertices, c The final
clipped Voronoi diagram
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The index i runs over all N mesh vertices xi:Ri is the

domain corresponding to the i-th Voronoi cell generated by

mesh vertex xi: In what follows, the energy integral will be

denoted by IRiðxiÞ. The Voronoi diagram is computed with

the L2 distance, because libraries that can create Voronoi
diagrams in other Lp distances are not widely available.

3.2.2 Energy gradient

The energy gradient is the total derivative of F with respect
to the position of each non-boundary mesh vertex [10].

Boundary vertices are considered unmovable. It is assumed

that x1; x2; . . .; xn are non-boundary vertices and that
xnþ1; xnþ2; . . .; xN are boundary vertices. The energy gra-

dient is given by:

d

dxk
Fðx1; x2; . . .; xNÞ ¼

d

dxk

XN

i¼1

IRiðxiÞ ¼
XN

i¼1

dIRiðxiÞ
dxk

k ¼ 1; . . .; n

The total derivative on the right hand side can be

rewritten in terms of partial derivatives.

d

dxk
Fðx1; x2; . . .; xNÞ ¼

XN

i¼1

oIRiðxiÞ
oxk

þ
XN

i¼1

oIRiðxiÞ
oRi

dRi

dxk

ð5Þ

Equation (5) can be further simplified. First, the partial

derivative of IRiðxiÞ with respect to xk is non-null only

when i = k. Secondly, Ri can be expanded in terms of the
Voronoi vertices Ci1;Ci2; . . .;CiMi of the i-th Voronoi cell.

All Voronoi cells do not have the same number of vertices

Mi. Figure 14 shows a Voronoi cell with six Voronoi
vertices. Equation (5) can be rewritten as:

d

dxk
Fðx1; x2; . . .; xNÞ ¼

oIRkðxkÞ
oxk

þ
XN

i¼1

XMi

j¼1

oIRiðxiÞ
oCij

dCij

dxk

ð6Þ
Most of the terms

dCij

dxk
are null, as explained in the next

section.

3.2.3 Gradient assembly

In order to evaluate the integrals with Gauss techniques,

the Voronoi cells are divided into triangular elements. Each

triangular element is composed of a mesh vertex and two
successive Voronoi vertices, as shown in Fig. 14.

Most of the terms inside the double summation found in

Eq. (6) vanish. By considering the relationship between the
mesh vertices and the Voronoi vertices, the relevant

Fig. 12 Meshes A, B, C and D all contain 81 interior vertices

Fig. 13 An oriented quadrilateral element

Fig. 14 A Voronoi cell divided into six triangular elements
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contributions can be identified. Each Voronoi vertex falls

into one of three categories.

1. A Voronoi vertex can be the center of the circle

circumscribing a Delaunay element. Voronoi vertex C1

from Fig. 15 belongs to this category. As long as the

displacements are infinitesimal, C1 depends only on

x0; x1 and x2: In Figs. 15, 16, 17, the dotted segments
are Delaunay edges.

2. A Voronoi vertex can be the intersection point between

a Voronoi facet and a boundary line segment. Voronoi
vertex C2 from Fig. 16 belongs to this category. Again,

as long as the displacements are infinitesimal, C2

depends only on x0; x2 and the boundary line segment.
3. A Voronoi vertex can be the median point between two

boundary mesh vertices. Voronoi vertex C2 from Fig. 17

belongs to this category. It depends only on x0 and x2:

The following formulas were derived from Eq. (6). They

state the contribution to the energy gradient of the element
E found in Fig. 15. It is assumed that x0; x1; x2 and x3 are

non-boundary mesh vertices. A? = sign is used because

there will be contributions from other elements as well.

dF

dx0
þ ¼ oIEðx0Þ

ox0
þ oIEðx0Þ

oC1

dC1

dx0
þ oIEðx0Þ

oC2

dC2

dx0
ð7Þ

dF

dx1
þ ¼ oIEðx0Þ

oC1

dC1

dx1
ð8Þ

dF

dx2
þ ¼ oIEðx0Þ

oC1

dC1

dx2
þ oIEðx0Þ

oC2

dC2

dx2
ð9Þ

dF

dx3
þ ¼ oIEðx0Þ

oC2

dC2

dx3
ð10Þ

3.2.4 Gauss integration

The terms inside Eqs. (7) to (10) are integrals on the ele-

ment E. A linear transformation T will be used in order to

go from the reference triangle E0 to the triangle E, as shown

in Fig. 18. It will then be possible to evaluate the various

integrals with Gauss techniques.

y ¼ Tðu; vÞ ¼ x0ð1" u" vÞ þ C1uþ C2v

Equation (4) defines IEðx0Þ as the energy contribution of

the element E. This equation can be rewritten in term of the

reference element E0; where J is the Jacobian of the
transformation T.

IEðx0Þ ¼
Z

E0

qðTðu; vÞÞjjMðTðu; vÞ " x0ÞjjppJdudv ð11Þ

Fig. 15 C1 is the center of the circle circumscribing the Delaunay
element x0 " x1 " x2

Fig. 16 C2 is the intersection point between the bisector of the
Delaunay edge x0 " x2 and the boundary line segment x0 " x3

Fig. 17 C2 is the median point between x0 and x2

Fig. 18 The linear transformation T
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Using Eq. (11), the partial derivative of IEðx0Þ with

respect to the position of mesh vertex x0 can be written as:

oIEðx0Þ
ox0

¼ o
ox0

Z

E0

qðTðu; vÞÞjjMðTðu; vÞ " x0ÞjjppJdudv

¼
Z

E0

qðTðu; vÞÞ
ojjMðTðu; vÞ " x0Þjjpp

ox0
Jdudv

The partial derivative of IEðx0Þ with respect to the position

of Voronoi vertex C1 is given by:

oIEðx0Þ
oC1

¼ o
oC1

Z

E0

qðTðu; vÞÞjjMðTðu; vÞ " x0ÞjjppJdudv

¼
Z

E0

oqðTðu; vÞÞ
oTðu; vÞ

oTðu; vÞ
oC1

jjMðTðu; vÞ " x0ÞjjppJ

þ qðTðu; vÞÞ
ojjMðTðu; vÞ " x0Þjjpp

oTðu; vÞ
oTðu; vÞ
oC1

J

þ qðTðu; vÞÞjjMðTðu; vÞ " x0Þjjpp
oJ
oC1

dudv

The Voronoi cells are divided into triangular elements. The

value of the density at each element node is obtained from a
given size field. The density is then interpolated linearly. The

orientation angle is taken as constant by element.

A Voronoi vertex can sometimes depend on three mesh
vertices, as in Fig. 15. The following matrix is the deriv-

ative of Voronoi vertex C1 with respect to mesh vertex x0
[10]. The derivatives of C1 with respect to mesh vertices x1
and x2 can be obtained by replacing x0 with x1 or x2.

dC1

dx0
¼ ðx1 " x0ÞT

ðx2 " x0ÞT
! ""1 ðC1 " x0ÞT

ðC1 " x0ÞT
! "

A Voronoi vertex can instead depend on two mesh

vertices and one boundary line segment, as in Fig. 16. The

following matrix needs to be used in this situation [10].
The derivative of C1 with respect to mesh vertex x1 can be

obtained by replacing x0 with x1:N is the normal vector to

the boundary line segment. It can be multiplied by any non-
zero constant without affecting the value of the derivative.

dC1

dx0
¼ ðx1 " x0ÞT

NT

! ""1 ðC1 " x0ÞT
0

! "

The derivation of these matrices can be found in Levy’s

article [10]. It is important to recall that it is only the

derivatives with respect to non-boundary mesh vertices that
need to be calculated.

3.3 LBFGS optimization

There are many potential issues with the LBFGS optimi-

zation step. In this section, the various problems that can be

encountered are discussed. Section 3.3.1 examines the

possibility of the LBFGS library moving vertices outside
the domain. Section 3.3.2 tells how the gradient can

become extremely small because of the higher norm.

Section 3.3.3 gives details about the convergence of the
algorithm.

3.3.1 The problem of points leaving domain

The LBFGS library performs line searches in order to find
new lower energy solutions. There is no guarantees that all

solutions are going to be restrained to the domain. A mesh

vertex could leave the domain, which would cause the code
to fail. To prevent this from happening, it is absolutely

necessary to check that all mesh vertices are inside the

domain before clipping the Voronoi diagram or computing
the energy and the gradient. If there is a single vertex that

falls outside the domain, the implementation should not try

to perform any calculations. Instead, it should automati-
cally set the energy to a very large value, such as 109. This

will ensure that the LBFGS library does not select this

particular solution. The library will continue the line search
and will eventually find a lower energy solution with all

mesh vertices inside the domain. An octree data structure

can be used for efficient spatial searches.

3.3.2 Gradient normalization

The L6 distance is used in practice. However, even thought

a high exponent is necessary in order to align the vertices in

a rectangular way, it can also cause numerical problems. If
the density q is missing from the formulation, the gradient

can reach values as low as 10-20. These values are too

close to zero and the optimization library will be unable to
find acceptable solutions. The addition of a density to the

energy functional solves the problem. As seen in Eq. (3),

the density is proportional to h-(p?2) and will tend to
normalize the energy and the gradient. Both will be closer

to one and the optimization library will work properly.

3.3.3 Convergence of the optimization procedure

The energy will get lower and lower after each iteration.
Figure 19 shows the convergence curve of a car hood

problem. The curve is very steep at the beginning, but

nearly horizontal at the end. It is not necessary to reach
complete convergence in order to obtain a good solution.

Eighty iterations are usually sufficient. Sometimes, instead

of converging, a solution can begin to oscillate. This usu-
ally happens only after an important decrease in energy.

The result is going to be acceptable even in these

conditions.
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4 Computation of the orientation angle

The cross field of Fig. 20 illustrates the alignment

direction in a simple domain. A method that could cal-

culate the orientation angle in a completely automatic
manner for general geometries would be very useful. If

the surface was curved, the local curvature could be used

in order to define the orientation [10]. However, it is not
the case here. A solution is needed for two-dimensional

domains.

As seen in Sect. 3.2.1, the orientation angle h is the
angle between the local coordinate system S0 and the mesh

coordinate system S. It is a function of the position x. In
most applications, the quads are expected to be aligned
with the boundaries. h is therefore already known at the

boundary. The Laplace equation could prove useful in

order to obtain a value of h inside the domain [20]. Nev-
ertheless, the Laplace equation cannot be directly applied

to the angle h, because all discrete values hþ k p
2 ; k 2 Z

indicate the same orientation. For example, let’s consider a
square domain aligned with S. At the boundary, the angle h
could be equal to 0, p

2 ;
3p
2 ; etc. The smoothing process

would generate a solution ranging from 0 to a multiple of
p
2 ; which would lead to an incorrect orientation.

Let z be a complex function of h.

zðxÞ ¼ aðxÞ þ ibðxÞ ¼ ei4hðxÞ with

a ¼ cosð4hðxÞÞ and b ¼ sinð4hðxÞÞ

z is invariant for all discrete values hþ k p
2 ; k 2 Z.

ei4ðhðxÞþkp2Þ ¼ ei4hðxÞþik2p ¼ ei4hðxÞ

It is the components of z that are smoothed with the

Laplace equation. The values of a and b are already known

at the boundary.

r2a¼ 0 and r2b¼ 0 inside the domain

a¼ cosð4hðxÞÞ and b¼ sinð4hðxÞÞon the boundaries

Let V be a boundary mesh vertex located at position v.
V is connected to one boundary edge at its left and one

boundary edge at its right. hðvÞ is equal to the angle of one

of the two boundary edges with respect to the x axis of S.
The modulus of z is equal to one on the boundaries, i.e.

a2 ? b2 = 1. However, there is no guarantee that the

modulus of z will remain equal to one inside the domain.
This is why both values a and b are necessary in order to

retrieve the angle h:

Fig. 19 A convergence curve
along with Voronoi diagrams
illustrating the process (at each
iteration, the clipped Voronoi
diagram, the energy and the
gradient need to be computed)

Fig. 20 A smooth cross field illustrating the alignment direction
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hðxÞ ¼ 1

4
atan2ðbðxÞ; aðxÞÞ

A similar explanation of this method can be found in
[16].

5 Results

In this section, different examples of high quality quad
surface meshes with well defined orientations are

presented.

Five steps are necessary to produce quad meshes:

1. Compute a conformal mapping that maps the 3D

surface to a 2D parametric space [14].
2. Create a triangular mesh in the parametric space.

3. Use this mesh to compute an orientation angle with the

method described in Sect. 4.
4. Use Levy’s algorithm to optimize the location of the

mesh vertices.

5. Apply the Blossom-Quad algorithm described in [17]
to combine the triangles into quads. Blossom-Quad

uses the well-known Blossom algorithm in order to

find a perfect matching between triangles. The match-
ing also optimizes the mean quality of the quads.

Figure 21 illustrates the different steps of the global
process: (1) is the triangular mesh of the geometry in the

three-dimensional space. (2) is the triangular mesh of the

geometry in the parametric space. (3) shows the cross field
determining the orientation of the quads. (4) is the trian-

gular mesh in the parametric space after the application of

Levy’s algorithm. (5) is the final quad mesh.
Figure 22 shows the energy density inside each Voronoi

cell after the application of Levy’s algorithm. As seen from

Eq. (4), the energy density is in fact the value of the Lp
distance normalized by the density. The alignment is per-

fect in pale blue regions. It is more or less incorrect in

yellow, orange or red regions.
The L6 distance was chosen for all the examples of this

article. However, it might be useful to compare the results

obtained with other distances. Figure 23 shows a car hood
mesh optimized with three different distances: L2, L4 and

L6.
The variable s is equal to 0.910 for the L2 mesh, 0.967

for the L4 mesh and 0.982 for the L6 mesh. It has been

calculated with Eq. (2). As expected, s is higher for the L6
mesh than for the L4 mesh. The number of Gauss inte-
gration points necessary to evaluate the integrals exactly

increases with the exponent of the Lp distance. The L6
distance is therefore a good compromise between speed
and squareness.

Fig. 21 The various steps necessary to produce quad meshes

Fig. 22 The energy density in the parametric space after the
application of Levy’s algorithm
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In Figs. 24 and 25, the meshes labelled as (b) were

created with Levy’s algorithm, while the meshes
labelled as (a) were created without it. The effect of

Levy’s algorithm can be verified by comparing

(a) and (b).
Figure 24 shows a car body part. (b) contains 10,051

quads. It took 5 min and 58 s to perform the 199 iterations

of Levy’s algorithm on a standard 2010 laptop. A similar
result could have been obtained with approximately 70

iterations in 2 min and 12 s.

(a) has an average quality of !g ¼ 0:80 and (b) has an
average quality of !g ¼ 0:90: The quality of a quadrilateral

g(q) is defined by the values of its four angles

ak, k = 1, 2, 3, 4 [17]:

gðqÞ ¼ max 1" 2

p
max
k

p
2
" ak

$$$
$$$

% &
; 0

' (

The quality goes from zero to one. If the element is a

perfect square, it is equal to one.
In an ideal quad mesh, each non-boundary mesh

vertex is 4-valent, which means that it is connected to

four neighbors. In (a), 71 % of the non-boundary mesh
vertices are 4-valent. In (b), this number reaches 89 %.

Figure 25 shows a mechanical part. (b) contains 44,489

quads and 250 geometric faces. It took 17 min and 43 s to
perform 199 iterations on each of the faces. (a) has an

average quality of !g ¼ 0:77; while (b) has an average

quality of !g ¼ 0:84: (b) contains 962 left-over triangles.
These triangles may be eliminated by using an improved

version of Blossom-Quad.

A time profiler was used to analyze the performance of
the implementation. The data show that calculating the

energy and the gradient is very time-consuming. The
clipped Voronoi diagram step as well as the LBFGS opti-

mization step have a negligible contribution.

Fig. 23 Three meshes of the
same car hood optimized with
different Lp distances

Fig. 24 a Blossom-Quad only and b Levy and Blossom-Quad
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6 Conclusion

A two-dimensional method for the minimization of Lloyd’s

energy in the Lp norm has been described in this article. It

is based on well-known gauss integration techniques and it
does not modify the initial edge meshes. When used in

combination with an indirect algorithm like Blossom-

Quad, it is able to create well-oriented quads of varying
size. The orientation field is computed in a completely

automatic manner. By taking advantage of global param-

etrization techniques, three-dimensional surfaces can also
be meshed.

The method has two apparent drawbacks. First, the

execution time can be sizable. The procedure is much more
complex than the traditional Lloyd’s algorithm and opti-

mizing large meshes can take very long. Secondly, the

method can only find local minimums, not global ones.
Indirect techniques can also be used to create hexahedra.

However, in order to create good quality hex meshes

aligned in precise directions, a three-dimensional version
of Levy’s algorithm would be necessary. The implemen-

tation described in this article could be used as a starting

point. Computing the energy and the gradient would not be
particularly more difficult in three dimensions. Neverthe-

less, clipping a Voronoi diagram in three dimensions would

be much more complex, but feasible [26].
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