
REVIVING THE SEARCH FOR OPTIMAL
TETRAHEDRALIZATIONS

Célestin Marot1 Kilian Verhetsel1 Jean-François Remacle1

1Université catholique de Louvain, iMMC, Avenue Georges Lemaitre 4, bte L4.05.02, 1348
Louvain-la-Neuve, Belgium

ABSTRACT

This paper revisits a local mesh modification method known as the Small Polyhedron Reconnection (SPR) [1]. The core
of the SPR operation is a branch and bound algorithm which computes the best 3D triangulation (tetrahedralization)
of a polyhedron through an efficient exploration of the set of all its triangulations. The search can accomodate for
additional geometric constraints and will inevitably find the highest quality triangulation of the polyhedron if a
triangulation exists. This paper focuses on the design of an optimized SPR operator and its application to improving
the quality of finite element meshes. Compared to the original algorithm, a speed-up of 10 million is obtained
by changing the heuristics determining the search space exploration order. This enables the integration of the
SPR operator into standard mesh generation procedures. We show quality improvements obtained by applying this
operation to meshes that have already been optimized using smoothing and edge removal techniques.

Keywords: SPR, reconnection, mesh generation, topological transformation, optimal triangulation

1. INTRODUCTION

Unstructured tetrahedral mesh generation generally
begins by creating a surface mesh of a given geometric
model. Afterwards, a tetrahedral mesh constrained
by the surface mesh is created using one of the few
available 3D mesh generation algorithms: advancing
front, Delaunay or octree-based techniques. Unfortu-
nately, all of those 3D mesh generation methods tend
to produce elements (tetrahedra) that are not readily
suitable for finite element computations. For exam-
ple, the Delaunay tetrahedralization doesn’t exclude
the creation of nearly flat tetrahedra, called slivers,
that cause tremendous numerical errors. It is possi-
ble to detect slivers through various quality measures
[2]. Any tetrahedral mesh generation procedure is fol-
lowed by a so-called mesh improvement step that aims
at optimizing the overall quality of the mesh, which is
mainly driven by the quality of its worst element.

Mesh improvement methods can be classified into two
categories: vertex relocation (or smoothing) methods

and topological transformations. Smoothing is the act
of modifying the coordinates of vertices without chang-
ing the connectivity of the mesh. On the other hand,
topological transformations treat the mesh as a graph
in which the vertex coordinates are fixed inputs.

Smoothing methods have been extensively studied in
the past 25 years [3, 4, 5, 6]. The objective of mesh
smoothing is twofold: obtain a better overall quality
and space out vertices harmoniously so that subse-
quent topological transformations improve the mesh.
Indeed, smoothing and topological transformations are
most effective when combined [7]. While most smooth-
ing methods optimize the mesh directly and are thus
dependent of the current triangulation, some methods
are able to find good placement for points relatively in-
dependently of the triangulation, using moving mesh
partial differential equations or central Voronoi tesse-
lations [8, 6, 9].

In this paper, a good distribution of points, obtained
using one or a combination of these smoothing tech-
niques, is assumed. The main focus of this paper is

326



thus on the improvement of the efficiency of topo-
logical transformations. Topological transformations
operates on cavities, which are the polyhedral holes
formed by the removal of a face-connected subset of
tetrahedra. In 3D, the most simple cavity has four
vertices, and only one possible tetrahedralization. The
most basic operations, called bistellar flips, operates
on a cavity of five vertices formed by the removal of
two or three tetrahedra. These are the 2-3 and 3-2
flips illustrated on Figure 1. These simple local recon-
nection schemes are effective at removing most low-
quality tetrahedra from the mesh.

2-3 flip

3-2 flip

Figure 1: Two bistellar flips, namely the 2-3 and 3-2
flips, consisting in switching between two triangula-
tions of a triangular bipyramid.

4-4 flip

4-4 flip4-4 flip

Figure 2: The 4-4 flip retriangulates an octahedron
by changing the edge around which the four tetrahedra
are placed.

When applying bistellar flips in a hill-climbing man-
ner, meaning a flip is only performed if it improves the
overall quality, one often reaches local minima where
no bistellar flip can possibly improve the quality. To
overcome this problem, increasingly complex methods
have been implemented. A 4-4 flip (Figure 2) can be

ed
ge
re
m
ov
al

m
ul
ti-
fa
ce
re
m
ov
al

edge
rem

oval

m
ulti-face

rem
oval

multi-face retriangulation

Figure 3: Edge removal, a more general operation
than the 3-2 flip, replaces the cavity around an edge
by choosing a triangulation of the vertices that are not
on the edge.

obtained by a combination of a 2-3 and a 3-2 flip [10].
Therefore, adding this operation to the basic bistel-
lar flips enables new optimizations that a hill-climbing
technique would not find when the first 2-3 flip does
not increase the mesh quality.

A more general transformation, called edge removal,
edge swap or n-to-m flip, operates on a cavity formed
by the the set of tetrahedra surrounding an edge
[11, 12] (Figure 3). The vertices that are not the end-
points of the edge form an annulus around that edge.
For each 2D triangulation of that annulus, we can cre-
ate a 3D triangulation of the cavity by linking each
triangle to both end points of the edge. The edge re-
moval operation considers all these possibilities and
chooses the best one if it increases the quality of the
current mesh. This operation supersedes the 3-2 and
4-4 flips and can also be implemented robustly as a
series of bistellar flips [12, 10]. The inverse of edge
removal is called Multi-face removal [12]. It is less
useful than edge removal in practice, and is particu-
larly tedious to implement. Multi-face retriangulation,
which is a combination of multi-face removal and edge
removal can be used to overcome a valley in the objec-
tive function in some cases where multi-face removal
cannot [13](Figure 3).

However, even with this large repertoire of topolog-
ical operation, mesh improvement is still subject to

327



local minima [12, 13]. Instead of adding more and
more operations to this zoo of topological transforma-
tion, it is possible to use an operation that general-
izes all of them, called the small polyhedron reconnec-
tion (SPR) [1]. This operation considers the problem
of finding the optimal triangulation of a cavity. A
cavity, in this context, is a set of volumes defined by
constrained closed surfaces, with possible interior con-
strained vertices, edges and triangles. The core idea of
the SPR algorithm is to compute the best triangula-
tion by searching the set of all possible triangulations
using a branch and bound algorithm. The cavity is
then replaced using its highest-quality triangulation
to contain all constrained triangles and edges. This
method is highly flexible and independent of the cho-
sen quality measure. However, using the SPR oper-
ation in practice presents great technical challenges
and subsequent mesh improvement procedures imple-
mented in Tetgen [10], CGAL [14, 15] or MMG3D [16]
do not use this method. Indeed, the performance of
the SPR search algorithm varies dramatically based
on the parameters and heuristics that it relies upon.
A poor choice makes the algorithm completely inade-
quate for large meshes, which can now be created at a
rate of several million tetrahedra per second [17]. The
main contribution of this paper is to present efficient
heuristics and implementation strategies that enable
the use of SPR to optimize large meshes.

We propose improvements to the SPR algorithm by
exploring the space of possible triangulations in a dif-
ferent order, aiming at a significant reduction to the
number of triangulations that need to be considered
during the search (Section 2.2). Repeated computa-
tions of expensive quality measures are also avoided by
storing their results (Section 2.4). These choices affect
the time taken to optimize cavities by several orders
of magnitudes (Section 2.5). The optimized SPR pro-
cedure that is proposed has been integrated into our
mesh improvement framework. The benefits of our
approach are shown by applying it to large meshes
(section 3).

2. QUICKLY COMPUTING OPTIMAL
TRIANGULATIONS

The core of our method is an efficient algorithm to
search for the best triangulation of a small polyhedral
cavity C. Let T (C) denote the set of all triangulations
of this cavity. The best triangulation is defined as the
triangulation of C that maximizes the quality of its
worst element according to a quality measure q:

Topt = arg max
T∈T (C)

min
t∈T

q(t)

The set of triangulations considered by the algorithm

Figure 4: Enumerating the triangulations of a poly-
gon. At each step, a boundary edge is picked, and a
branch is created for each possible triangle that con-
tains that edge. The untriangulated area remaining
after a triangle insertion is filled by applying this pro-
cedure recursively.

may be restricted to only those that contain a given
set of edges and triangles if certain features must be
preserved.

An optimal triangulation is computed using a branch
and bound algorithm (Algorithm 1). Starting from
the boundary ∂C of the cavity C as input, a triangle
F ∈ ∂C is selected. Any mesh of the cavity C must
include a tetrahedron t that contains the triangle F .
Each possible tetrahedron is considered, by branch-
ing on all possible choices for its fourth vertex. After
inserting a new tetrahedron, the boundary ∂C is re-
placed by the boundary of the part of the cavity which
has not yet been filled with tetrahedra (see Figure 4).
The best mesh of this new cavity is computed by re-
cursively applying the algorithm. This corresponds to
the exploration of a tree whose nodes correspond to
triangulations and whose edges correspond to the in-
sertion of tetrahedra.

Throughout this process, the best triangulation found
so far is tracked, as well as its quality q∗. After each
branch, an upper bound on the quality of the best
solution that could be obtained is computed by finding
the minimum quality element that has already been
added to the solution. If the upper bound is worse
than q∗, this part of the search tree is skipped. By the
end of the algorithm, the optimal triangulation Topt

will have been found.

The rest of this section discusses important design
choices in order to achieve an efficient algorithm:

1. for a given triangle, how to compute the set of
tetrahedra that can be built on top of it;

2. the selection of the triangle F on top of which the

328



next tetrahedron should be built;

3. the order in which the tetrahedra containing F
are considered for insertion into the mesh;

4. how to avoid repeated evaluations of expensive
geometric predicates.

Input: B: the target boundary;
T : a partial triangulation;
T ∗: the best triangulation found;
q: a quality function

Output: The best triangulation of the cavity
if B = ∅ then return T ;
F ← some triangle of B;
foreach vertex v do

t← the tetrahedron formed by joining v to
each vertex of F ;

if q(t) > mint′∈T∗ q(t
′) then

T ′ ← T ∪ {t};
B′ ← B − ∂t;
T ∗ ← Optimize-Cavity(B′, T ′, T ∗, q);

end

end
return T ∗;
Algorithm 1: Optimize-Cavity: search for the
best triangulation with a given boundary.

2.1 Computing candidate tetrahedra

At each branching step, the algorithm considers a tri-
angular face F before trying to add each tetrahedron
t that contains F to the current triangulation. Be-
cause three of the vertices of t must be the vertices
of F , only one vertex needs to be chosen. Many of
those choices need to be filtered out, because inserting
the corresponding tetrahedra would result into an in-
valid triangulation. Below are the conditions used to
eliminate such candidates.

Geometric validity Each candidate tetrahedron t
must have a positive orientation and a positive quality
q(t) greater than the quality q∗ of the best triangula-
tion found so far.

Geometric intersections The solution must not
include intersecting tetrahedra. The new faces and
edges of each candidate t are tested for intersection
with the edges and triangles of the boundary of the
unmeshed region as well as with constrained features.
Tetrahedra that completely enclose a vertex are also
rejected. All intersection tests are performed exactly
by relying only on exact computations of the orienta-
tions of tetrahedra.

2.2 Mesh construction order

Changing the order in which tetrahedra are inserted
into the mesh drastically affects the number of tri-
angulations that need to be considered by the algo-
rithm. This behavior is common in difficult optimiza-
tion problems [18, 19]. Heuristics are used to choose a
favorable order for most cases.

First, a triangular face F must be selected from the
boundary of the unmeshed region. The algorithm then
branches on the set of all tetrahedra containing F that
can be added to the current triangulation. Faces are
selected by attributing a cost to each of them. This
cost is computed by summing the number of candi-
date tetrahedra containing the face and their quali-
ties. A lower cost means either fewer candidates, hence
a smaller search tree, or worse candidates, hence a
tighter upper bound allowing for more pruning.

2.3 Ordering candidate tetrahedra

Once the face F has been selected, a second heuristic
defines the order in which the different candidate tetra-
hedra are inserted into the mesh. If a good solution
is found early, subtrees that provably cannot contain
a better solution need not be explored. Hence, can-
didate tetrahedra are evaluated based on criteria used
to determine how likely they are to be part of a good
solution:

1. the number of faces shared with the boundary,
since cavities with fewer boundary faces are gen-
erally easier to fill;

2. whether or not the candidate has a higher qual-
ity than the tetrahedra that have already been
inserted into the mesh;

3. whether or not the candidate contains a new ver-
tex, since any solution must contain all vertices
present in the cavity.

Each tetrahedron is given a score based on the number
of criteria that it meets. Candidates with a higher
score are tested first.

2.4 Reusing results of geometric predi-
cates

During the search, the orientations and qualities of
many tetrahedra need to be evaluated. A robust al-
gorithm requires these to be evaluated using adaptive
precision in order to obtain consistent results despite
numerical errors. As a result, these evaluations are
computationally intensive. This effect is compounded
by the need to evaluate the same tetrahedra many

329



times, if it is considered as a candidate at multiple
occasions during the search.

Computing the qualities of all
(
n
4

)
tetrahedra of an

n-vertex point ahead of time would avoid repeated
computations, but this solution is inadequate: the ori-
entations and qualities of some tetrahedra are never
needed. In many cases, the search ends early after
only evaluating a small fraction of all possible tetra-
hedra.

Instead, our approach is to memoize the computation
of quality values. To evaluate a tetrahedron T , it is
first normalized as T ′ by sorting the indices of its four
vertices. While sorting, the parity of the number of
permutations that were performed is tracked. A table
is then accessed to test whether or not the quality
of T ′ is known. If not, it is computed and stored in
the table. The quality of T is the same as that of T ′

for an even number of permutations, and the opposite
otherwise.

In addition, if the tetrahedron intersects a constrained
edge or fully encloses a vertex, a null quality is stored
in the look-up table. This prevents the insertion of
these tetrahedra into the mesh without requiring the
reevaluation of the intersection tests.

2.5 Performance results

The SPR algorithm can be used with any chosen qual-
ity measure. For the purpose of this analysis we use

γ =

√
24 3V

|emax|(A1 +A2 +A3 +A4)
=

√
24 rin
|emax|

, (1)

where V is the volume of the tetrahedron, |emax| is
the length of the longest edge, Ai is the area of the ith
face and rin is the inradius of the tetrahedron. The
factor

√
24 is added such that the optimal tetrahedron,

which is a regular tetrahedron, has a quality γ = 1.
This quality measure penalize all tetrahedra according
to their associated interpolation error [2].

For each cavity featured in Figure 5, we measured the
running time of the SPR operation (Table 1). All 5
cavities were extracted from real-world, non-optimized
meshes. We measured the running time in two differ-
ent settings:

1. with no initial lower bounds given to the algo-
rithm, as is the case when SPR is used for bound-
ary recovery and no initial triangulation is known;

2. with the quality of the initial triangulation γorig
as a lower bound, as is done for mesh optimiza-
tion.

1 2

3 4

5

Figure 5: Different cavities on which the tests were
conducted. № 1,3 and 4 were randomly extracted from
the mesh improvement procedure of a torus or sphere.
№ 2 looks ordinary but is particularly slow without
cleverly chosen heuristics, whereas № 5 comes from a
mesh with bad elongated triangles on its surface.

The execution time in the second case is always strictly
less than in the first, because the lower bound al-
lows the algorithm to prune triangulations containing
a tetrahedron with a quality worse than γorig. All cav-
ities were optimized within 3.6 milliseconds when the
lower bound was used, and within 13.3 seconds other-
wise.

We measured the speedups offered by the different im-
provements to the algorithm by disabling each opti-
mization independently:

1. the face selection heuristic (Section 2.2);

2. the candidate ordering heuristic (Section 2.3);

3. the reuse of previously computed qualities of
tetrahedra (Section 2.4).

The combined effect of these improvements was mea-
sured by disabling all of them simultaneously. The im-
proved algorithm is between 104 and 107 times faster

330



Cavity V |∂C| Quality Time (ms) Speedup
γorig γafter q(t) > 0 q(t) > γorig Section 2.2 Section 2.3 Section 2.4 Combined

1 25 44 0.28 0.52 3.1 2.5 25 1.4 0.68 4×104

2 31 52 0.31 0.53 13.3 3.0 3.5×104 3.1 5×104 3×106

3 31 52 0.25 0.51 9.6 3.6 106 10 2072 > 107

4 22 38 0.23 0.55 4.8 1.0 501 2.6 0.97 2×104

5 29 48 0.29925 0.29938 7.3 1.3 5×104 1.1 1.5 8×104

Table 1: Summary of the results obtained by optimizing the cavities of Figure 5 using SPR. Speedups are given for
q(t) > γorig.

than a naive implementation. In the case of the third
cavity, the execution with all optimization disabled
was stopped after 20 hours, and no improved solution
found (Table 1).

All experiments were performed on an Intelr CoreTM

i7-6700HQ CPU. Timings and speed ups are the aver-
age of 100 runs, or of two runs for entries that required
more than one minute of computation time. Our im-
plementation uses only a small amount of memory, al-
though asymptotically proportional to n4 were n is the
number of points of the cavity. For the cavities tested,
the maximum RAM usage did not exceed 3 MB.

3. APPLICATION TO MESH
IMPROVEMENT

Computing the optimal triangulation of a cavity is an
expensive operation. When optimizing large meshes,
this operator should be used alongside other mesh im-
provement techniques in order to achieve good per-
formances. The optimization framework we pro-
poses combines SPR with mesh smoothing and edge-
removal.

Mesh smoothing We use Laplacian smoothing,
improved by a golden-section search on the segment
between the original position and the average of neigh-
boring vertices. This approach is effective in practice
even though the objective function is not unimodal.
Freitag et al. give a review of this combined Laplacian
and optimization-based technique [4].

Edge removal The edge removal technique used
here is based on tables containing all triangulations of
the disk with up to seven points. We iterate through
each triangulation in order to determine the most ap-
propriate one.

Using SPR Throughout the optimization process,
a list of low-quality tetrahedra is maintained. The
threshold on the value of γ that determines what is
a ”low-quality” tetrahedron is given as a parameter

to our program. A threshold of 0.5 was used for all
the results given in this paper. We first attempt to
improve each bad tetrahedron using mesh smoothing
and edge removal, as these techniques are much faster
than SPR. SPR is then used to optimize cavities that
surround the low quality tetrahedra that remain after
applying other optimization techniques.

The cavity used to optimize a given tetrahedron is ob-
tained by selecting all tetrahedra that contain at least
one of its vertices1. There are about 50 tetrahedra
in an average cavity (Figure 6a). To save time, the
search only explores the first 2000 nodes of the search
tree, since it is rarely beneficial to spend more time on
individual cavities.

If the mesh quality is still insufficient after this step,
the entire optimization process is repeated. Because of
the modifications performed by applying the SPR op-
erator, mesh smoothing and edge-removal may remove
some of the remaining bad elements. This is done it-
eratively until the mesh can no longer be improved.

To avoid optimizing the same cavities multiple times,
a modification flag is maintained for each tetrahedron.
The SPR operator is only run on a cavity if at least
one of its tetrahedra is marked as modified. The new
tetrahedra obtained from any of the three optimization
techniques are marked as modified. This modification
flag is removed after running SPR if the solution has
not improved.

SPR efficiency SPR is approximately 1000×
slower than edge removal and smoothing, as Table 2
shows. The first SPR pass has a success rate above
85%. In other words, the first time edge removal
and smoothing failed to improve the mesh further, the
SPR operation could improve 85% of bad tetrahedra.
The efficiency of each operation decreases after each
iteration of the mesh improvement process, until ev-
ery operation fails for all bad tetrahedra. All itera-
tion combined, SPR improved the mesh 63.1% of the
times. This is particularly impressive considering that

1An other choice of cavity might be more efficient. We
still need to investigate that.

331



(a) rim mesh: 6 285 719 tet. (b) piston mesh: 277 648 tet.

Figure 6: Input tetrahedral meshes, both generated with our in-house 3D constrained Delaunay. The geome-
tries come from the CAD models 00000040 and 00009733 from the ABC data set [20]. The surface meshes were
generated with gmsh -2 -algo meshadapt -clcurv -clmax 1.5 and gmsh -2 -algo frontal -clscale 0.1 [21]

respectively.

γ < 0.4

0 2 4 6 8 10·10−10

1

2

·105

γ

#
te

t

(a) unimproved mesh

γ < 0.4

0 2 4 6 8 10·10−10

1

2

·105

γ

#
te

t

(b) ours without SPR

γ < 0.4

0 2 4 6 8 10·10−10

1

2

·105

γ

#
te

t

(c) ours

Figure 7: On the first row, tetrahedra with a quality γ < 0.4 are displayed for the rim mesh (Figure 6a). On the
second row is an histogram of qualities present in the rim mesh. The red and blue vertical lines indicate the minimum
and average qualities respectively. First column correspond to the input mesh, without any mesh improvement. For
the second column, only edge removal and smoothing were applied. For the last column, edge removal, smoothing
and SPR were applied.

332



number of calls total time average time per call success rate cavity size (# tet)
smoothing 5519647 33.0 6×10−6 2.5% 26.5
edge removal 6297417 6.3 1×10−6 7.8% 4.9
SPR 103602 397.9 3.8×10−3 63.1% 51.2

Table 2: Statistics on the mesh improvement procedure of the rim mesh (Figure 6a). The fourth column shows the
proportion of calls that lead to a modification of the mesh. The last column shows the average number of tetrahedra
in the cavity before the operation was executed.

range of γ 0 .. 0.2 0.2 .. 0.4 0.4 .. 0.6 0.6 .. 1 total time [s]

unimproved mesh 64 097 197 909 523 801 5 499 912 6 285 719 0
ours without SPR 193 3794 172 435 5 726 705 5 903 127 23.4
ours 14 344 95 614 5 718 753 5 814 725 441.5
Stellar − − − − − > 72 000

Table 3: Quality distribution of elements in the rim mesh, together with timings of the mesh improvement procedure.

the SPR operation is only used when both edge re-
moval and smoothing are totally ineffective. However,
the SPR operation still account for 90.1% of the total
time.

In term of quality improvements, the SPR operation
helps removing most bad tetrahedra as can be seen on
Figure 7. An implementation based only on edge re-
moval and smoothing still has 3987 tetrahedra with a
quality below 0.4 when optimizing the large rim mesh.
When using SPR, this number falls to 358 (Table 3).
For the smaller mesh of a piston (Figure 6b), the re-
sults are similar (Table 4).

Comparison to Stellar Stellar is a tetrahedral
mesh improvement program, elaborated by Klingner
and Shewchuk in 20092. The different methods used
within this program are summarized in their paper [22]
and best detailed in Klingner’s Ph.D. dissertation [23].
To our best knowledge, no other program based on lo-
cal modifications consistently optimizes meshes as far
as Stellar does.

Indeed, Stellar implements many more operations
than our simple edge removal and improved Laplacian
smoothing [23]. First, Stellar uses a more sophisti-
cated smoothing algorithm based on nonsmooth op-
timizations introduced by Freitag and Ollivier-Gooch
[7]. Second, in addition to edge removal, it imple-
ments the inverse operation called multi-face removal3

and edge-contraction, also called edge-collapse, which
is an operation that removes an edge from the mesh,
replacing its two endpoints with a single vertex. The
position of the remaining vertex is chosen using their
advanced smoothing method. Finally, Stellar uses ver-
tex insertion in combination with all other mesh op-

2http://people.eecs.berkeley.edu/~jrs/stellar/
3multi-face removal alone does not give Stellar any edge

over our program because SPR supersedes it.

timizations techniques, forming a complex, huge com-
posite operation. In comparison, our algorithm does
neither add nor remove any vertex from the mesh.
Thanks to edge-contraction and vertex insertion, Stel-
lar gets significantly better results than our program
for small meshes. However, while our simple mesh im-
provement procedure took 7 minutes to optimize the
rim mesh shown in Figure 6a, Stellar was still in the
first stages of its mesh improvement procedure after 20
hours. We were thus not able to improve large meshes
with Stellar. Furthermore, the simplicity of our ap-
proach makes the code far simpler to maintain: our
whole code is ≈ 2500 lines long while Stellar is closer
to 25 000.

For our tests, we disabled all operations of Stellar that
were modifying the surface mesh, leaving only the op-
erations explained previously. We can compare the
results for the smaller piston mesh on the histograms
given on Figure 8 and with the data in Table 4. Stel-
lar improves the mesh further but is slower than our
program.

4. CONCLUSION

Thanks to a careful and efficient implementation, we
have shown that the SPR operator can effectively be
used to remove most of the low-quality tetrahedra that
are left by other mesh improvement operations. Such
an efficient implementation is important not only for
better mesh improvement methods, but because it en-
ables the use of SPR, a very flexible tool, for a wide
range of other applications. Indeed, the SPR can re-
place any cavity-based topological transformation.

Its use for boundary recovery has already been studied
in previous works [24, 25]. Theoretically, the SPR op-
eration provides a strong guarantee: if a triangulation
of a polyhedron contains the required triangles and
edges, the SPR operation executed on this polyhedron

333

http://people.eecs.berkeley.edu/~jrs/stellar/


range of γ 0 .. 0.2 0.2 .. 0.4 0.4 .. 0.6 0.6 .. 1 total time [s]

unimproved mesh 2758 8249 21 028 245 613 277 648 0
ours without SPR 1 170 7904 254 553 262 628 0.8
ours 0 27 6269 253 625 259 921 14.5
Stellar 0 10 820 257 193 258 023 263.9

Table 4: Quality distribution of elements in the piston mesh, together with timings of the mesh improvement
procedure.

0 2 4 6 8 10·10−10

0.5

1

1.5
·104

γ

#
te

t

(a) unimproved mesh

0 2 4 6 8 10·10−10

0.5

1

1.5
·104

γ

#
te

t

(b) ours w/o SPR

0 2 4 6 8 10·10−10

0.5

1

1.5
·104

γ

#
te

t

(c) ours

0 2 4 6 8 10·10−10

0.5

1

1.5
·104

γ

#
te

t

(d) Stellar

Figure 8: Histogram of qualities present in the piston mesh. The red and blue vertical lines indicate the minimum
and average qualities respectively.

will inevitably find it. Therefore, using the SPR with
a large-enough cavity that contains the missing edges
and triangles will allow to recover the right geometry
most of the time. The rest of the time, the cavity
is not meshable as such. The algorithm can add one
or more Steiner points inside the polyhedron in order
to make it meshable. The number and the position
of Steiner points is a difficult subject. which was, in
our opinion, best studied by Si and Gärtner [26]. It
may also be possible to enlarge the cavity, widening
the panel of possible triangulations in order to make
the polyhedron meshable.

Another valuable use of the SPR operation concerns
the removal of vertices. Such an operation is useful
for adaptive meshing where parts of the mesh must
be dynamically coarsened. Vertex removal can also be
used to improve mesh quality, in the same way that
vertex insertion is used [22]. SPR makes it easy to
find the best triangulation to fill the cavity left after
removing a vertex. By comparison, a previous solution
generates a suboptimal triangulation by applying the
ear-clipping algorithm to the same cavity [27].

A fast implementation of the SPR operator is needed
in order to use these techniques in practical meshing
software.

ACKNOWLEDGMENTS

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement HEXTREME, ERC-2015-
AdG-694020).

References

[1] Liu J., Sun S., Wang D. “Optimal Tetrahedraliza-
tion for Small Polyhedron: A New Local Trans-
formation Strategy for 3-D Mesh Generation and
Mesh Improvement.” p. 14, 2006

[2] Shewchuk J.R. “What Is a Good Linear Fi-
nite Element? - Interpolation, Conditioning,
Anisotropy, and Quality Measures.” Tech. rep.,
In Proc. of the 11th International Meshing
Roundtable, 2002

[3] Amenta N., Bern M., Eppstein D. “Optimal
Point Placement for Mesh Smoothing.” Jour-
nal of Algorithms, vol. 30, no. 2, 302–322, Feb.
1999. URL http://linkinghub.elsevier.com/

retrieve/pii/S0196677498909841

[4] Freitag L., Jones M., Plassmann P. “A Paral-
lel Algorithm for Mesh Smoothing.” SIAM Jour-
nal on Scientific Computing, vol. 20, no. 6, 2023–

334

http://linkinghub.elsevier.com/retrieve/pii/S0196677498909841
http://linkinghub.elsevier.com/retrieve/pii/S0196677498909841


2040, Jan. 1999. URL http://epubs.siam.org/

doi/10.1137/S1064827597323208

[5] Freitag L.A., Knupp P.M. “Tetrahedral mesh im-
provement via optimization of the element con-
dition number.” International Journal for Nu-
merical Methods in Engineering, vol. 53, no. 6,
1377–1391, Feb. 2002. URL http://doi.wiley.

com/10.1002/nme.341

[6] Dassi F., Kamenski L., Farrell P., Si H.
“Tetrahedral mesh improvement using mov-
ing mesh smoothing, lazy searching flips,
and RBF surface reconstruction.” Computer-
Aided Design, vol. 103, 2–13, oct 2018.
URL http://www.sciencedirect.com/science/

article/pii/S0010448517302336

[7] Freitag L.A., Ollivier-Gooch C. “Tetra-
hedral mesh improvement using swapping
and smoothing.” International Journal
for Numerical Methods in Engineering,
vol. 40, no. 21, 3979–4002, Nov. 1997. URL
http://doi.wiley.com/10.1002/%28SICI%

291097-0207%2819971115%2940%3A21%3C3979%

3A%3AAID-NME251%3E3.0.CO%3B2-9

[8] Huang W., Ren Y., Russell R. “Moving Mesh
Partial Differential Equations (MMPDES) Based
on the Equidistribution Principle.” SIAM Jour-
nal on Numerical Analysis, vol. 31, no. 3, 709–
730, Jun. 1994. URL https://epubs.siam.org/

doi/abs/10.1137/0731038

[9] Du Q., Wang D. “Tetrahedral mesh generation
and optimization based on centroidal Voronoi tes-
sellations.” International Journal for Numerical
Methods in Engineering, vol. 56, no. 9, 1355–
1373, mar 2003. URL http://doi.wiley.com/

10.1002/nme.616

[10] Si H. “TetGen, a Delaunay-Based Quality Tetra-
hedral Mesh Generator.” ACM Trans. Math.
Softw., vol. 41, no. 2, 11:1–11:36, feb 2015. URL
http://doi.acm.org/10.1145/2629697

[11] de L’isle E.B., George P.L. “Optimization of
Tetrahedral Meshes.” I. Babuska, W.D. Henshaw,
J.E. Oliger, J.E. Flaherty, J.E. Hopcroft, T. Tez-
duyar, editors, Modeling, Mesh Generation, and
Adaptive Numerical Methods for Partial Differen-
tial Equations, The IMA Volumes in Mathematics
and its Applications, pp. 97–127. Springer New
York, 1995

[12] Shewchuk J.R. “Two Discrete Optimization Algo-
rithms for the Topological Improvement of Tetra-
hedral Meshes.” p. 11

[13] Misztal M.K., Bærentzen J.A., Anton F.,
Erleben K. “Tetrahedral Mesh Improve-
ment Using Multi-face Retriangulation.” B.W.
Clark, editor, Proceedings of the 18th In-
ternational Meshing Roundtable, pp. 539–555.
Springer Berlin Heidelberg, Berlin, Heidelberg,
2009. URL http://link.springer.com/10.

1007/978-3-642-04319-2_31

[14] Boissonnat J.D., Devillers O., Pion S., Teillaud
M., Yvinec M. “Triangulations in CGAL.” Com-
putational Geometry, vol. 22, no. 1, 5–19, may
2002. URL http://www.sciencedirect.com/

science/article/pii/S0925772101000542

[15] Jamin C., Alliez P., Yvinec M., Boissonnat J.D.
“CGALmesh: A Generic Framework for Delau-
nay Mesh Generation.” ACM Transactions on
Mathematical Software, vol. 41, no. 4, 1–24, Oct.
2015. URL http://dl.acm.org/citation.cfm?

doid=2835205.2699463

[16] Dobrzynski C. “MMG3D: User Guide.” Technical
Report RT-0422, INRIA, mar 2012. URL https:

//hal.inria.fr/hal-00681813

[17] Marot C., Pellerin J., Remacle J.F. “One
machine, one minute, three billion tetrahe-
dra.” International Journal for Numerical Meth-
ods in Engineering, vol. 117, no. 9, 967–990,
2019. URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/nme.5987

[18] Gent I.P., Walsh T. “Easy Problems are Some-
times Hard.” Artif. Intell., vol. 70, no. 1-2,
335–345, 1994. URL https://doi.org/10.1016/

0004-3702(94)90109-0

[19] Gomes C.P., Selman B., Crato N. “Heavy-Tailed
Distributions in Combinatorial Search.” Prin-
ciples and Practice of Constraint Programming
- CP97, Third International Conference, Linz,
Austria, October 29 - November 1, 1997, Proceed-
ings, pp. 121–135. 1997. URL https://doi.org/

10.1007/BFb0017434

[20] Koch S., Matveev A., Jiang Z., Williams F., Arte-
mov A., Burnaev E., Alexa M., Zorin D., Panozzo
D. “ABC: A Big CAD Model Dataset For Geo-
metric Deep Learning.” arXiv:1812.06216 [cs],
dec 2018. URL http://arxiv.org/abs/1812.

06216. ArXiv: 1812.06216

[21] Geuzaine C., Remacle J.F. “Gmsh: a three-
dimensional finite element mesh generator with
built-in pre facilities.” p. 24, 2009

[22] Klingner B.M., Shewchuk J.R. “Aggressive
Tetrahedral Mesh Improvement.” M.L. Brewer,
D. Marcum, editors, Proceedings of the 16th

335

http://epubs.siam.org/doi/10.1137/S1064827597323208
http://epubs.siam.org/doi/10.1137/S1064827597323208
http://doi.wiley.com/10.1002/nme.341
http://doi.wiley.com/10.1002/nme.341
http://www.sciencedirect.com/science/article/pii/S0010448517302336
http://www.sciencedirect.com/science/article/pii/S0010448517302336
http://doi.wiley.com/10.1002/%28SICI%291097-0207%2819971115%2940%3A21%3C3979%3A%3AAID-NME251%3E3.0.CO%3B2-9
http://doi.wiley.com/10.1002/%28SICI%291097-0207%2819971115%2940%3A21%3C3979%3A%3AAID-NME251%3E3.0.CO%3B2-9
http://doi.wiley.com/10.1002/%28SICI%291097-0207%2819971115%2940%3A21%3C3979%3A%3AAID-NME251%3E3.0.CO%3B2-9
https://epubs.siam.org/doi/abs/10.1137/0731038
https://epubs.siam.org/doi/abs/10.1137/0731038
http://doi.wiley.com/10.1002/nme.616
http://doi.wiley.com/10.1002/nme.616
http://doi.acm.org/10.1145/2629697
http://link.springer.com/10.1007/978-3-642-04319-2_31
http://link.springer.com/10.1007/978-3-642-04319-2_31
http://www.sciencedirect.com/science/article/pii/S0925772101000542
http://www.sciencedirect.com/science/article/pii/S0925772101000542
http://dl.acm.org/citation.cfm?doid=2835205.2699463
http://dl.acm.org/citation.cfm?doid=2835205.2699463
https://hal.inria.fr/hal-00681813
https://hal.inria.fr/hal-00681813
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5987
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5987
https://doi.org/10.1016/0004-3702(94)90109-0
https://doi.org/10.1016/0004-3702(94)90109-0
https://doi.org/10.1007/BFb0017434
https://doi.org/10.1007/BFb0017434
http://arxiv.org/abs/1812.06216
http://arxiv.org/abs/1812.06216


International Meshing Roundtable, pp. 3–23.
Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. URL http://link.springer.com/10.

1007/978-3-540-75103-8_1

[23] Klingner B.M. Improving Tetrahedral Meshes.
Ph.D. thesis, EECS Department, University
of California, Berkeley, Nov 2008. URL
http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2008/EECS-2008-145.html

[24] Liu J., Chen B., Chen Y. “Boundary recov-
ery after 3D Delaunay tetrahedralization without
adding extra nodes.” International Journal for
Numerical Methods in Engineering, vol. 72, no. 6,
744–756, 2007. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/nme.2044

[25] Chen J., Zhao D., Huang Z., Zheng Y., Gao
S. “Three-dimensional constrained boundary
recovery with an enhanced Steiner point sup-
pression procedure.” Computers & Structures,
vol. 89, no. 5-6, 455–466, Mar. 2011. URL
https://linkinghub.elsevier.com/retrieve/

pii/S0045794910002828

[26] Si H., Gärtner K. “3D boundary recovery by con-
strained Delaunay tetrahedralization.” Interna-
tional Journal for Numerical Methods in Engi-
neering, vol. 85, no. 11, 1341–1364, Mar. 2011.
URL http://doi.wiley.com/10.1002/nme.3016

[27] Devillers O., Teillaud M. “Perturbations and
Vertex Removal in a 3D Delaunay Triangula-
tion.” 2003. URL https://hal.inria.fr/

inria-00166710

336

http://link.springer.com/10.1007/978-3-540-75103-8_1
http://link.springer.com/10.1007/978-3-540-75103-8_1
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-145.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-145.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2044
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2044
https://linkinghub.elsevier.com/retrieve/pii/S0045794910002828
https://linkinghub.elsevier.com/retrieve/pii/S0045794910002828
http://doi.wiley.com/10.1002/nme.3016
https://hal.inria.fr/inria-00166710
https://hal.inria.fr/inria-00166710

	Introduction
	Quickly Computing Optimal Triangulations
	Computing candidate tetrahedra
	Mesh construction order
	Ordering candidate tetrahedra
	Reusing results of geometric predicates
	Performance results

	Application to Mesh Improvement
	Conclusion



