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Motivation
Meshing quadrangles
Meshing quadrangles for finite elements methods
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One way to spawn points
Frontal approach
From boundaries,...

For all x ∈M , 4 preferred orthonormal directions are given

•

θθ + π
2

=⇒ it defines a cross field

θ
?= θ + π

2 k,∀k ∈ Z
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Modeling
Cross fields

•
θθ + π

2

A cross field which relative angle is θ may be defined by

〈cos(4θ); sin(4θ)〉

which is suitable:

I Uniqueness
cos
(

4
[
θ + k

π

2

])
= cos(4 θ), ∀k ∈ Z

I Distance∫ 2π

0
| cos(4[θi + α])− cos(4[θj + α])|2dα

= π
(
(cos(4θi)− cos(4θj))2 + (sin(4θi)− sin(4θj))2)
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Complex analogy
Vector fields
Actually, a cross field consists of vector fields:

< cos(4θ)︸ ︷︷ ︸
u

; sin(4θ)︸ ︷︷ ︸
v

>≡ exp(i 4θ)︸ ︷︷ ︸
exp(i θ)4

= u+ i v

Two dimensional vector fields correspond to values of complex functions

0 <

=

•z

f(z)

f(z) = z2 f(z) = log(z)
<

=

0 <

=

0
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Critical points
Indices

I Vector fields may have critical point(s) zc, f(zc) = 0
I zc has an index I defined as winding number of points around

1

1Figure from Tristan Needham’s book, "Visual complex analysis"
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Poincaré-Hopf theorem
Vector fields on closed surfaces

If a vector field on a smooth closed surface of genus g has only a finite
number n of singular points sj , then

n∑
j=1

I(sj) = 2(1− g)

where 2(1− g) equals the Euler characteristic of a closed surface
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Computing cross fields
Criteria

How is a cross field built over a surface?

I Smooth cross fields for smooth directions

I Average boundary orientations within surface

I Cross field should have unit norm almost everywhere*
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Engineering approach
Energy formulation
Smooth out and average data from boundary conditions with Laplace

E(u; v) = min
u,v

∫
M

|∇u|2 + |∇v|2dx

such that over ∂M : u ≡ 1 and v ≡ 0

But data vanishes far away boundaries
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Engineering approach
Energy formulation
A penalty term is then added to foster unit norm cross fields

E(u; v) = min
u,v

∫
M

|∇u|2 + |∇v|2dx︸ ︷︷ ︸
Smoother term

+β

∫
M

(u2 + v2 − 1)2dx︸ ︷︷ ︸
Penalty term
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Ginzburg-Landau functional
Preliminaries

Ginzburg-Landau functional is

Eε(f) = 1
2

∫
M

|∇f |2dx + 1
4ε2

∫
M

(|f |2 − 1)2dx

which is defined for maps f ∈ H1(M,C), i.e. f ∈ H1(M) : M 7→ C

I ε is a characteristic length of M , called coherence length
I Let H1

g (M,C) = {f ∈ H1(M,C) : f = g on ∂M}

min
f∈H1

g(M,C)
Eε(f)
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Initial mapping
Topological requirements

Let S1 = {z ∈ C : |z| = 1}.

min
f∈H1

g(M,S1)

∫
M

|∇f |2dx

Solution corresponds to a smooth mapping between M and unit circle S1

Solution f0 is unique and smooth
if and only if
I(g∂M ) = 0

Otherwise, |∇f |2 is not bounded in some xc ∈M
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Relaxed mapping
Penalty term

If I(g∂M ) 6= 0 =⇒ H1
g (M,S1) = ∅

It means there does not exist admissible solution to minimization problem

Hence, constraint is relaxed: it is implicitly enforced within formulation

min
f∈H1

g(M,C)

1
2

∫
M

|∇f |2dx + 1
4ε2

∫
M

(|f |2 − 1)2dx

Asymptotic behavior of solution fε∫
M

|∇fε|2dx −→
ε→0
∞
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Link with directional fields
Ginzburg-Landau equation

I Ginzburg-Landau functional maps x ∈M over unit circle S1

I Mapping f may describe a directional field: f = exp(i 4θ)
I Asymptotic behavior of Ginzburg-Landau equation yields vector

fields critical points

x ∈M <

=

0

•
f

12
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Critical points
Ginzburg-Landau functional
A critical point zc has following contribution

π (I(zc))2 | log(ε)|
as ε tends to zero within Ginzburg-Landau functional Eε

Eε is minimum by minimizing absolute value of index of critical points

13
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Non unit norm cross field
Weak constraint
Since |f | may be different of unity, it has to be redefined

f := r

4

exp(i 4θ)
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Directional fields
Interpretation

Directions of cross fields correspond to 4-th roots of vector fields expression

f(z) = z4 = r4 exp(i 4θ)

Directions of n-fields correspond to n-th roots of vector fields

f(z) = zn = rn exp(i nθ)

Directional fields with 6 symmetries spawn vertices of equilateral triangles

<

=

0

f
6θ

<

=

0
θ

θ + π
3
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Conclusion

I Quadrangle quality may be ensured by a cross field

I A n-directional field corresponds to n-th root of a vector field
I H1

g (M,S1) is too restrictive and unusable within FEM
I Ginzburg-Landau functional is meaningful for flat or closed surfaces,

and it is consistent for two-manifolds

• • •

• • •

• • •

•

θθ + π
2

min
f∈H1

g(M,C)

∫
M

|∇f |2dx + 1
2ε2

∫
M

(|f |2 − 1)2dx

Eε(xc) ≈ π (I(xc))2 | log(ε)|

For meshing examples, see Georgiadis 2017
For further details, see talk 6B.2 Jezdimirovic
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Thank you for your attention!
Any questions?

This work is funded by ARC WAVES 15/19-03

[*] "Ginzburg-Landau vortices", F. Bethuel et al.

pierre-alexandre.beaufort@uclouvain.be


