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Motivation
Meshing quadrangles

Meshing quadrangles for finite elements methods
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Quadrangle quality strongly depends on point locations




One way to spawn points
Frontal approach

From boundaries,...
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For all x € M, 4 preferred orthonormal directions are given
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it defines a cross field
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For all x € M, 4 preferred orthonormal directions are given



Modeling

Cross fields
0+ L0
X‘ A cross field which relative angle is 8 may be defined by

(cos(40); sin(46))



Modeling

Cross fields
0+ L0
X A cross field which relative angle is 8 may be defined by

(cos(40); sin(46))

which is suitable:

» Uniqueness
cos (4 {0 + ng =cos(40), Vke Z

» Distance .
/0 | cos(4]6; + a]) — cos(4[8; + a])|*da
=7 ((cos(49i) — cos(419j))2 + (sin(46;) — sin(40j))2)



Complex analogy
Vector fields

Actually, a cross field consists of vector fields:
< cos(40);sin(40) >=exp(i 40) =u+i v
—— —— N——

U v exp(i 6)%
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Complex analogy
Vector fields

Actually, a cross field consists of vector fields:
< cos(40);sin(40) >=exp(i 40) =u+i v
—— —— N——

U v exp(i 6)%

Two dimensional vector fields correspond to values of complex functions
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Critical points
Indices

> Vector fields may have critical point(s) z¢, f(z¢) =0
> 2 has an index J defined as winding number of points around

Simple Crosspoint Vortex Sink
9 =+1 $=+1

$=—2 =42
Double Crosspoint Dipole 1

IFigure from Tristan Needham's book, "Visual complex analysis"



Poincaré-Hopf theorem
Vector fields on closed surfaces

If a vector field on a smooth closed surface of genus g has only a finite
number n of singular points s;, then

where 2(1 — g) equals the Euler characteristic of a closed surface



Computing cross fields
Criteria

How is a cross field built over a surface?

» Smooth cross fields for smooth directions
» Average boundary orientations within surface

» Cross field should have unit norm almost everywhere*



Engineering approach
Energy formulation

Smooth out and average data from boundary conditions with Laplace
Eu; v) :min/ Vul? + |Vo|2dz
w,v o Jar

such that over OM : u=1andv =0



Engineering approach
Energy formulation

Smooth out and average data from boundary conditions with Laplace

Eu; v) :min/ Vul? + |Vo|2dz
M

such that over OM : u=1andv =0

But data vanishes far away boundaries
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Direction fields




Engineering approach
Energy formulation

A penalty term is then added to foster unit norm cross fields

E(u;v) = min/ |Vul? + |Vv\2dac—|—,8/ (u? +v? — 1)%dax
u,v M M

Smoother term Penalty term



Engineering approach
Energy formulation

A penalty term is then added to foster unit norm cross fields

E(u;v) = min/ |Vul? + |Vv|2dw—|—,6’/ (u? +v? —1)%dx
wv JM M

Smoother term

Penalty term



Ginzburg-Landau functional
Preliminaries

Ginzburg-Landau functional is
=3 [ Wit s [ 57~ 1

which is defined for maps f € H'(M,C), i.e. f€ H'(M): M — C
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Initial mapping
Topological requirements

Let S'={z€C:|z| =1}

min / |V f|>dx
feHL(M,SY) Jyp

Solution corresponds to a smooth mapping between M and unit circle S!
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Initial mapping
Topological requirements

Let S'={z€C:|z| =1}

min / |V f|>dx
feH}(M,SY) Jpr

Solution corresponds to a smooth mapping between M and unit circle S!

Solution fy is unique and smooth
if and only if
J(gorr) =0

Otherwise, |V f|? is not bounded in some x¢ € M
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Relaxed mapping

Penalty term

If 3(gons) #0 = H;(M,Sl) =0
It means there does not exist admissible solution to minimization problem
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Relaxed mapping

Penalty term

If 3(gons) #0 = H;(M,Sl) =0
It means there does not exist admissible solution to minimization problem

Hence, constraint is relaxed: it is implicitly enforced within formulation

min / ViPdm+ g [ (5P 1)
M

feH( M,C)2

Asymptotic behavior of solution f.

|Vf6|2d:c — 0
M e—0
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Link with directional fields
Ginzburg-Landau equation

» Ginzburg-Landau functional maps x € M over unit circle St
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Link with directional fields
Ginzburg-Landau equation

» Ginzburg-Landau functional maps x € M over unit circle St
» Mapping f may describe a directional field: f = exp(i 46)

» Asymptotic behavior of Ginzburg-Landau equation yields vector
fields critical points

R

R = undefined directions
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Critical points
Ginzburg-Landau functional

A critical point z¢ has following contribution
~(LC\\2
™ (3(z%))" [log(e)|

as € tends to zero within Ginzburg-Landau functional E.
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Non unit norm cross field
Weak constraint

Since | f| may be different of unity, it has to be redefined

fr=r exp(i 40)
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Non unit norm cross field
Weak constraint

Since |f| may be different of unity, it has to be redefined

fi=r"exp(i 46)
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Directional fields
Interpretation

Directions of cross fields correspond to 4-th roots of vector fields expression

f(z) = 2* = rtexp(i 40)
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Directional fields
Interpretation

Directions of cross fields correspond to 4-th roots of vector fields expression
f(z) = 2* = rtexp(i 40)
Directions of n-fields correspond to n-th roots of vector fields

f(z) =2" =r"exp(i nb)

Directional fields with 6 symmetries spawn vertices of equilateral triangles
L\\)\ &

660

f
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Conclusion

» Quadrangle quality may be ensured by a cross field
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Conclusion

» Quadrangle quality may be ensured by a cross field
» A n-directional field corresponds to n-th root of a vector field
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Conclusion

» Quadrangle quality may be ensured by a cross field
» A n-directional field corresponds to n-th root of a vector field
> H}(M,S") is too restrictive and unusable within FEM
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Conclusion

Quadrangle quality may be ensured by a cross field

A n-directional field corresponds to n-th root of a vector field

H} (M, S") is too restrictive and unusable within FEM
Ginzburg-Landau functional is meaningful for flat or closed surfaces,
and it is consistent for two-manifolds

vvyyvyy

1
i Vfdx + — 2 _1)%
fefillﬁf,@) /M Vi + 2¢2 M(m ydx

E(x%) = m (3(x%))* |log(e)|

For meshing examples, see Georgiadis 2017
For further details, see talk 6B.2 Jezdimirovic
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Thank you for your attention!
Any questions?

This work is funded by ARC WAVES 15/19-03

[*¥] "Ginzburg-Landau vortices", F. Bethuel et al.

pierre-alexandre.beaufort@uclouvain.be



