Quad layouts with high valence singularities for flexible quad meshing

Authors: Jovana Jezdimirović, Alexandre Chemin, Maxence Reberol, François Henrotte, Jean-François Remacle

Abstract: A novel algorithm that produces a quad layout based on an imposed set of singularities is proposed. In this paper, we either use singularities that appear naturally, e.g., by minimizing Ginzburg-Landau energy, or use as an input user-defined singularity pattern, possibly with high valence singularities that do not appear naturally in cross-field computations. The first contribution of the paper is the development of a formulation that allows computing a cross-field from a given set of singularities through the resolution of two linear PDEs. Specific mesh refinement is applied at the vicinity of singularities to accommodate the large gradients of cross directions that appear in the vicinity of singularities of high valence. The paper’s second contribution is a correction scheme that repairs limit cycles and/or non-quadrilateral patches. Finally, a high-quality block-structured quad mesh is generated from the quad layout and per-partition parametrization.

Paper in proceedings of the 29th International Meshing Roundtable

Multi-block decomposition and meshing of 2D domain using Ginzburg-Landau PDE

Authors: Jovana Jezdimirović, Alexandre Chemin, Jean François Remacle

Abstract: An in-depth method to generate multi-block decomposition of the arbitrary 2D domain using 2D cross fields solution of Ginzburg-Landau partial differential equation (PDE) is presented. It is relied on parameterization of multi-block decomposition of the domain, obtained by using particular PDE for the purpose of generating direction fields, appropriate number and localization of singular points and their separatrices. We have proved that solutions of particular PDE imply locally integrable vector fields and have adequate distribution of singularities, advocating its usage. Multi-block graph was generated by the separatrices and extraordinary vertices of the domain (singularities, corners and separatrices intersections) and obtained blocks were parameterized/remeshed. As a result, a mechanism to obtain multi-block structured all-quad mesh in automatic manner is developed.

  • Paper (in proceedings of the 28th International Meshing Roundtable)
  • The code will soon be available in Gmsh